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Synopsis

A deep neural network provides a practical approach to extract features from existing image database. For MRI reconstruction, we presented a novel
method to take advantage of such feature extraction by Bayesian inference. The innovation of this work includes 1) the definition of image prior based
on an autoregressive network, and 2) the method uniquely permits the flexibility and generality and caters for changing various MRI acquisition settings,
such as the number of radio-frequency coils, and matrix size or spatial resolution.

Introduction

In compressed sensing and parallel imaging MRI reconstruction, commonly used analytical £; and ¢, regularization can improve MR image quality’.
Recently, deep learning reconstruction methods, such as cascade, deep residual, and generative deep neural networks have been used to optimize
regularization or as alternatives to analytic regularization®=>. The density prior was used for reconstruction in Ref®. These methods have improved MR
image reconstruction fidelity in some predetermined acquisition settings or pre-trained imaging tasks?™>. However, they are not robust for variable
under-sampling schemes of MRI acquisition, such as the number of radio-frequency coils, and matrix size or spatial resolution. In this work, we apply
Bayesian inference to the reconstruction problem, aiming to decouple the data-driven prior and the MRI acquisition settings.

Methods

One of our motivations is to estimate a distribution over MR images that can be used to compute the likelihood of images and serve as a prior model for
reconstruction. The generative network is commonly used to learn a parameterized model from images to approximate the real distribution”%, We
adopted PixelCNN++ as the prior model.

With Bayes’ theorem, one could write the posterior as a product of likelihood and prior:

fly | z)g(z)
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where f(y | &) was probability of the measured k-space datay € CM fora given image @ € C¥ where N is the number of pixels and M is the

number of measured data points, and g(2) was the prior model. The maximum a posterior estimation (MAP) could provide the reconstructed image &,
given by:

fzly) = x f(y | ) g(=),

e (4) = argmax f(z | y) = argmax f(y | @) g(x). (1)

The n X m image could be considered as an vectorized image © = (m(l), ey ac(”z)), e,z = 1,1, z® = T21,..-,and z(") = Tp . The joint
distribution of the image vector could be expressed as following :
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T, I, S, & were the parameters of mixture distribution for each pixel. Therefore, the network NET(x, ©) shown in Figure 1(b), that predicts the
distribution of all pixels of an image, was trained by

© = arg max p(x; NET(z, ©)),
(€]

where © was the trainable hyperparameters. When trained, the prior model g(a:) as

9(x) = p(x; NET(z, ©)). (2)
The measured k-space data y was given by
y=Az + ¢,

where A was the encoding matrix and € was the noise. Substituting Eq. (2) into the log-likelihood for Eq. (1) yielded
@yap (y) = argmax log f(y | ) + log p(z | NET(z, ©)). ®3)
4

The log-likelihood term log f(y | &) had less uncertainties and was close to a constant with uncertainties from noise that was irrelevant and additive to
. Hence, Eq. (3) can be rewritten as

@yiap (y) = arg max log p(x | NET(z, ©)) s.t. y=Azxz + e.
4

Then, the projected gradient method was used to solve above maximization, whose iterative steps were illustrated in Figure 1(c). The gradient was
calculated by backpropagation.
For knee MRI, we used NYU FAST MRI reconstruction databases®. For brain MRI, we used a 3 T human MRI scanner (Achieva TX, Philips Healthcare) with



an 8-channel brain coil for data collection. Fifteen healthy volunteers were scan by standard-of-care brain MRI protocols. (also put the scan parameters
here if you have space)

Results

Our previous study used this method in different MRI acquisition scenarios, including parallel imaging, compressed sensing, and non-Cartesian
reconstructions.

Figure 2 shows the quantitative comparisons among the proposed method, GRAPPA, and compressed sensing'®. The k-space used in comparisons were
retrospectively under-sampled from the fully-acquired test data. Figure 3 shows the reconstruction results from prospectively accelerated data
acquisition. Figure 4 shows the prior applied to spiral imaging. Figure 5 shows convergence curves reflected stabilities of iterative steps: 1) maximizing
the posterior 2) k-space fidelity enforcement.

The same deep learning model has also been tested for various contrasts from other Cartesian k-space reconstruction experiments, thus there is no
need to re-train the deep learning model for further studies.

Discussion

Our Bayesian method is a generic and interpretable deep learning-based reconstruction framework. It employs a generative network as the MRI prior
model. The framework is capable of exploiting MRI data from the prior model, for any given MRI acquisition settings. The separation of the image prior
and the encoding matrix embedded in the network made the proposed method more flexible and generalizable compared with conventional deep
learning approaches.

The proposed method can reliably and consistently recover the nearly aliased-free images with relatively high acceleration factors. The reconstruction
from a maximum of posterior showed the successful reconstruction of the detailed anatomical structures, such as vessels, cartilage, and membranes in-
between muscle bundles.

In this work, the results demonstrated the successful reconstruction of high-resolution image (256 x 256 matrix) with low-resolution prior (trained with
128 x128 matrix), confirming the feasibility of reconstructing images of different sizes without the need for retraining the prior model.

Conclusion

We presented the application of Bayesian inference in MR imaging reconstruction with the deep learning-based prior. The result demonstrated that the
deep prior is effective for image reconstruction with flexibility in changing the MRI acquisition settings, such as the number of radio-frequency coils, and
matrix size or spatial resolution.
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Figure 1. (a) The illustration of the conditional relationship. (b) Diagram shows the PixelCNN++ network in Ref® which was the prior g(m) used in this
work. Each ResNet block consisted of 3 Resnet components. The input of network was @, outputs were parameters of mixture distribution (71', sy Sy ).
(c) The prior g(&) was trained with 128 x 128 images. To address this mismatch, one 256 X 256 image was split into four 128 128 patches when
applying the prior.

Table 1; PSNR comparison (in dB, mean + standard deviation, N = 100)
for parallel imaging and the proposed method on knee and brain MRI.
Undersampling factor  organ GRAPPA Ours
R=2 knee A0 15.6443.24

R=3 knee  34.87. 41.714

R=4 knee  20.42+3, 3844364
R=2 brain ~ 37.8 48,40
R=3 brain - 317 15.5

R=4 brain 2885 4T

OFEAN

knee
knee
hrain
hrain

11,244-2.81

Figure 2. The quantitative comparisons. For both the knee imaging and brain imaging, 100 images (N=100) were used to test the performance of the
proposed method via PSNR, which shows the proposed method provides huge improvements.

Figure 3. (a) Comparisons between compressed sensing and the proposed methods, using 22% k-space and 256 X 256 matrix size, which shows the
proposed method substantially reduced the aliasing artifact and preserved image details in compressed sensing reconstruction. (b) Comparisons
between GRAPPA and the proposed methods under 3-fold acceleration. The proposed method effectively eliminated the noise amplification in GRAPPA
reconstruction.
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CG SENSE Qurs Ground truth

PSNR(dB) 22.52 37.18

NMSE(%) 15.69 0.54

Figure 4. Comparison of the CG SENSE and proposed reconstruction for simulated spiral k-space with 4-fold acceleration (i.e., 6 out of 24 spiral
interleaves), acquired T2*weighted gradient echo sequence. The intensity of error maps was five times magnified. The proposed method substantially
reduced the aliasing artifact in spiral reconstruction. Noted that the same deep learning model used in the previous Cartesian k-space reconstruction
was applied to spiral reconstruction, without the need of re-training the deep learning model.
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Figure 5. The 22% sampling rate and 1D undersampling scheme were used in this simulation. The residual norm was written as |y — Ax| 2, and the
reciprocal of log-likelihood for MRI prior model was given in Eq. (2). The decay of residual norm stopped earlier than that of the log-likelihood. This
evidence indicated that using the residual norm as the £, fidelity alone was sub-optimal, and the deep learning-based statistical regularization can lead
to a better reconstruction result compared with the £5 fidelity.
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