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with knee and brain MRI database, and it shows considerable improvement over

the former reconstruction methods such as parallel imaging and compressed sensing.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is commonly used imaging modality in

clinical practice. The shortcoming of MRI is its inherent slow imaging speed.

Therefore, a method how to shorten the long scanning time has been a hot research

topic in MRI. The methods to accelerate imaging has evolved from the perspective of

parallel imaging to the perspective of compressed sensing imaging. With the advent

of deep learning, many studies are seeking to develop learning-base reconstruction

with the existing MR image database. The establishment of generic image prior is a

challenge problem and the focus of this thesis. A brief outline describing the focus

of each chapter is provided below.

1.1 Thesis Outline

Chapter 1 gives a brief introduction to the principle of MR imaging from the

perspective of signal processing. Parallel imaging techniques, SENSE and GRAPPA,

are discussed with several pages. As the origin of learning-based, the application

of compressed sensing to image reconstruction is introduced. Chapter 2 presents

generalizable image reconstruction with a modified optimization algorithm whose

proximal operation for ℓ1 regularization has been replaced by a separated neural net-

work. The network is trained with the existing knee MR images. Chapter 3 explores

image reconstruction for the undersampled k-space data with Bayesian inference. In

this method, a generative network serves as prior model which is learnt from image

database and the reconstruction is achieved by maximizing posterior probability.

Chapter 4 gives a brief summary of the development of image reconstruction and

future research recommendation.

1.2 MR imaging principles

Magnetic resonance imaging is a non-invasive medical imaging modality, and ef-

fective for studying the anatomy and function of central nervous and musculoskeletal

1



systems, such as brain and knee. MR imaging is not only free of ionizing radiation

but also full of means for characterizing the tissues and organs.

1.2.1 Signal generation and k-space

MR imaging is based on the physics of magnetic resonance, which is a phe-

nomenon that the proton spins interact with the magnetic field. Different magnetic

fields are utilized to manipulate the hydrogen spins resided in various tissues, and the

radiofrequency coils are used to detect the precession of those spins after excitation.

With the presence of external static filed B0, the magnetic moment vector gener-

ated by a spinning proton precesses around the field direction, and the precession

frequency (Larmor frequency) is given by

ω0 = γB0 , (1.1)

where γ is gyromagnetic ratio. And a magnetic moment vector has either parallel

alignment along with static field or anti-parallel alignment. The number of spins

parallel to the magnetic field exceeds the number anti-parallel to that field, and the

spin excess is the source of equilibrium magnetization, given by

M0 =
ρ0γ2h̄

4kT
B0 (1.2)

In order to get a detectable magnetization component in the transverse plane, the

radiofrequency magnetic field (RF pulse) is switched on for a short time period to

tip magnetization away from equilibrium. The transverse component is represented

by a complex function defined as below:

Mxy(~r, t) = Mx(~r, t)+ iMy(~r, t) , (1.3)

where~r is a vector in a 3-D coordinate, the component Mx and My are detected by

the receiver coils. It should be noted that the relaxation of transverse magnetization

and the regrowth of longitudinal magnetization would be triggered by the RF pulse

excitation. The relaxation of transverse magnetization is referred to as the decay

of transverse magnetization induced by the variation in the local field. The local

field comes from the externally applied field and the field of the surrounding spins

(i.e., spin-spin relaxation). Let the time origin t = 0 start at when the RF (excitation)

pulse finishes, we have

Mxy(~r, t) = Mxy(~r,0)e
−t/T2(~r) (1.4)
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Here, we define M(~r,0) as the instantaneous transverse magnetization after excitation,

T2 as the relaxation time. In imaging reconstruction, two aspects of transverse

magnetization are normally considered: the relaxation and the precession. Commonly

in MR terminologies, T2 only accounts for spin-spin relaxation, T ∗2 accounts for

both external field and spin-spin effects. In conjunction with the T2 or T ∗2 relaxation,

the regrowth of longitudinal magnetization, i.e., magnetization returns back to the

equilibrium, follows

Mz(~r, t) = Mz(~r, t)e
−t/T1(~r)+M0(1− e−t/T1(~r)) (1.5)

Here, Mz(t) denotes the longitudinal magnetization. Furthermore, different tissues

have different T1 and T2 values, which contribute to the image contrast.

The precession frequency is used for Fourier encoding. Referring to as the

Larmor frequency, and the precession frequency at each spatial location is given by

ω(~r, t) = γBz(~r, t) (1.6)

Here, Bz(~r, t) is comprised of three components

Bz(~r, t) = B0 +∆B0(~r)+ ~G(t) ·~r (1.7)

where ∆B0(~r) denotes the static field’s inhomogeneity, which is called B0 field map.

The spatial-varied field gradient ~G(t) ·~r = ~Gx(t)~i+ ~Gy(t)~j+ ~Gz(t)~k is applied during

the signal readout stage to provide spatial encoding with designed gradient waveform.

Therefore, the transverse magnetization at a given spatial location is a time-varying

function.

Mxy(~r, t) = Mxy(~r,0)e
−t/T2(~r)e−iγ

∫ t
0 Bz(~r,t)dt (1.8)

= Mxy(~r,0)e
−t/T2(~r)e−iω0teφ0(~r)e−iγ

∫ t
0
~G(τ)·~rdτ (1.9)

For the simplicity, the relaxation term e−t/T2(~r) and the field map term eφ0(~r) are

ignored. On MR scanner, the receiver coil can detect the magnetic field flux changes

induced by the precession of transverse magnetization. The received MR signal sr(t)

is from all precessing transverse magnetization in the volume:

sr(t) =
∫

V
Mxy(~r, t)dv =

∫

x

∫

y

∫

z
M(x,y,z, t)dxdydz. (1.10)

For two-dimensional (2D) imaging, we use RF pulse to excite spin in a slice-by-slice

3



manner. Hence, we write

m(x,y) =
∫ z0+∆z/2

z0−∆z/2
M(x,y,z)dz (1.11)

and

sr(t) =
∫

x

∫

y
m(x,y)e−iω0te−iγ

∫ t
0
~G(τ)·~rdτdxdy (1.12)

where m(x,y) is a composite representation of transverse magnetizations, which is

modulated by the gradient and RF pulses applied. The term e−iω0t can be removed

with signal demodulation during the image reconstruction. For 2D spatial encoding,

only field gradients along ~Gx(t) and ~Gy(t) are needed. The Eq (1.12) is rewritten as

s(t) =
∫

x

∫

y
m(x,y)e−i2π[kx(t)+ky(t)]dxdy (1.13)

where

kx(t) =
γ

2π

∫ t

0
Gx(τ)dτ

ky(t) =
γ

2π

∫ t

0
Gy(τ)dτ (1.14)

are time integrals of the gradient waveforms, which are referred to as the trajectory

function in the k-space. At a given time t, s(t) equals to the coefficient given by the

2D Fourier transform for m(x,y) at the some spatial-frequency location. Commonly,

the Fourier transform space is referred to as k-space M(kx,ky). To fully represent

m(x,y), a set of {s(t)} is required, which covers a sufficient part of k-space to allow

the reconstruction of m(x,y).

1.2.2 Sampling requirements

MR image formation depends on the appropriate coverage in k-space. In 2D

imaging, the ”raster”-like k-space trajectory corresponds to rectangular coverage

on a Cartesian grid, allowing convenient image reconstruction with a 2D DFT. By

far, our analysis has been with continuous-time signals, but in practice, the k-space

data is sampled at discrete points in k-space. For each repeated sampling in k-space,

frequency encoding (or so-called readout) gradient pulse Gy is fixed and phase

encoding gradient pulse Gx is incremental, covering the entire Cartesian k-space.

The discrete sampling periods are ∆kx and ∆ky; while the highest spatial-frequencies

sampled are kxmax and kymax. With 2D imaging, an asymmetry exists in the k-space

acquisition as samples along the kx direction accumulate during a single readout
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while samples along the ky direction accumulate by repeating the excitation for

different phase encodes. We can express the sampled k-space data M̂(kx,ky) as

M̂(kx,ky) = M(kx,ky) ·

(

1

∆kx∆ky

)

III

(

kx

∆kx

,
ky

∆ky

)

·Rect

(

kx

Wkx

,
ky

Wky

)

(1.15)

where

Wkx
=

(

kxmax +
∆kx

2

)

Wky
=

(

kymax +
∆ky

2

)

(1.16)

are width of k-space or distance traversed in k-space for each direction. The resultant

Fourier transform into the object domain relates the image m̂(x,y) to the theoretical

image content m(x,y), as given by

m̂(x,y) = m(x,y)∗ III(∆kx
x,∆ky

y)∗Wkx
Wky

sinc(Wkx
x)sinc(Wky

y) (1.17)

where ∗ denotes convolution. Eq. 1.17 describes how the image field of view (FOV)

and spatial resolution relate to the k-space sampling periods (∆kx
,∆ky

) and k-space

widths (Wkx
,Wky

).

According to the Nyquist sampling theorem, discrete sampling in frequency

domain amounts to replications in the corresponding spatial domain. In MRI,

sampling takes place in the k-space, i.e., the reciprocal space; hence, replications in

the spatial domain is unavoidable and must be considered in designing the k-space

trajectory. Assuming the k-space sampling has an infinite/ideal coverage, then from

Eq. 1.17 the resultant object is

m̂(x,y) = m(x,y)∗ III(∆kx
x,∆ky

y) (1.18)

Convolution of m(x,y) with III(∆kx
x,∆ky

y) implies replication of m(x,y) at intervals

of 1/∆kx
in the x direction and by 1/∆ky

along the y direction. The separation of these

replications has to be greater than the effective FOV in the image domain. From Eq.

1.18, we can write that

FOVx =
1

∆kx

= sampling rate along kx

FOVy =
1

∆ky

= sampling rate along ky (1.19)

Fig1.1 illustrates the relation between the FOV and (∆kx
,∆ky

) in k-space for 2D
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imaging. Along the frequency encoding direction, the (∆kx
depends on the readout

gradient amplitude Gx and the sampling interval ∆t. Along the phase-encoding

direction, the ∆ky
is determined by the gradient amplitude Gy and the fixed phase-

encoding duration τy. Their mathematical expressions are

∆kx
=

γ

2π
Gxr∆t

∆ky
=

γ

2π
Gyiτy (1.20)

Therefore the expression for FOV can be written as

FOVx =
1

∆kx

=
1

γ
2π Gxr∆t

FOVy =
1

∆ky

=
1

γ
2π Gyiτy

(1.21)

To summarize, the k-space sampling and Fourier transform in MRI reconstruction

allow:

• recording N k-space lines at different ky positions by changing the area under

the Gy gradient for each measurement.

• reconstructing m(x,y) by 2D Fourier transformation of the k-space data, which

reside on a Cartesian grid.

𝑘

𝑘

Δ𝑘
Δ𝑘

𝑘

𝑘

𝑦
𝑥

FOV
FOV

1 Δ𝑘⁄
1 Δ𝑘⁄

Figure 1.1 (a)Sampling in k-space. (b) Corresponding replication in object

domain

In Nyquist sampling theorem, aliasing arises from that the actual sampling

rate is below the Nyquist sampling rate. In MRI, insufficient sampling rate in k-

space, i.e., in the reciprocal space, results in aliasing artifacts in the spatial domain.

Because objects are spatially bounded, aliasing can be avoided in MR imaging
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by increasing the FOV through reducing gradient areas, i.e., Gxr∆t or Gyiτy in the

k-space acquisition.

In the phase-encoding direction, the gradient area, Gyiτy, can be reduced to

increase the FOV. However, for fixed scan time, the number of phase-encoding lines

remains fixed, and thus, the highest spatial frequency sampled along ky is reduced.

This reduces the spatial resolution. For maintaining the same resolution along y,

additional phase encodes must be acquired, which increase the scan time. Hence an

increase in scan time or a reduction in the spatial resolution are the trade-offs for

avoiding aliasing in the phase-encoding direction.

In the readout direction, k-space samples are acquired rapidly through an A/D

converter with a sampling rate far beyond the Nyquist sampling rate for a given FOV.

Then the readout signal from A/D converter is processed by an anti-aliasing filter

with bandwidth commensurate with the sampling frequency of the A/D converters

and FOV. The residual aliasing effects along the readout direction could be caused

by the tail in the filter’s frequency response. But the aliasing artifact along readout

direction should be sufficiently small and can be ignored in any MRI scans.Regarding

the computation, we express the relationship between the image m(x,y) and k-space

(kx,ky) with a compact linear equation

(kx,ky) = Fm(x,y) (1.22)

where F is DFT.

1.3 Methods to accelerate imaging

Along the phase encoding direction, the full traverse in k-space requires a rel-

atively long time to finish, especially for high-resolution imaging. Therefore, in

practice, it is preferable to accelerate imaging, utilizing reconstruction techniques

such as parallel imaging and compressed sensing. Meanwhile, when applying those

accelerated reconstruction techniques, there is a trade-off between acceleration fac-

tor and the image quality. In the following subsections, a brief introduction of

acceleration methods is presented.
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1.3.1 Parallel imaging

The long scanning time is a limiting factor in many clinical applications, but

the speed of sufficient k-space acquisition is restricted by the gradient slew rate and

nerve stimulation threshold, making high-quality images time-consuming. Parallel

imaging is an effective approach for shortening the scanning time, using k-space

data received with a phase-array coil, i.e., an array of coils.

The long MRI scan is caused by a large number of phase encodings, which are

k-space lines at difference ky positions. Usually, RF coils have inhomogeneous

sensitivity maps over the image object, and parallel imaging utilizes this property to

reduce the scanning time by exploiting the spatially varied information characterized

by those sensitivity maps. With phase-array coil, k-space can be then undersampled

by skipping lines in phase encoding, usually with a constant interval, which is

required by the particular reconstruction method. Finally, the reconstruction method

is employed to reconstruct a full k-space data or an aliasing-free image.

Various methods have been developed for the parallel imaging reconstruction in

both spatial and frequency domains, or both[2]. The signal from a receiver RF coil

array with N channels is given by

si(t) =
∫

Ω
d~rm(~r)c j(~r)e

−2πi~k(t)·~r 1≤ j ≤ N (1.23)

The image or volume is modulated by complex-valued sensitivity maps c j of all

receiver coils. The k-space signals si(t) are then given by the Fourier transform

of the coil images c jm sampled at discrete time points tl along a given k-space

trajectory~k(t). Undersampling can be used to accelerate the measurement, but this

can cause aliasing artifact with direct reconstruction, as discussed in Section 1.2.2.

The objective of parallel imaging is to reconstruct artifact-free images from the

undersampled k-space data by optimally exploiting the complementary information

from multiple receiver coils. Due to the weak encoding power of the coil sensitivities,

it can accelerate acquisition using a modest factor of 2 in each spatial dimension. In

the following subsections, two commonly used parallel imaging methods: SENSE

and GRAPPA are introduced. SENSE operates in the image domain, while GRAPPA

operates on k-space data.
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SENSE

The sensitivity encoding for fast MRI was proposed by Pruessmann [21]. With

SENSE, the scan time is reduced by the acceleration factor of R, through skipping

phase-encoded lines in k-space. According to Eq. (1.21), the FOV of the recon-

structed image is reduced by the factor R. If the object extends outside the reduced

FOV, some pixels will be aliased or wrapped. Aliased pixels are displaced by integer

multiples of L/R, where L is the original phase-encoding FOV. Without loss of

generality, we take the phase-encoded direction to be the y direction of the image.

Let the total number of replicates be NA. The value of NA is pixel-dependent and

determined by R and the size and shape of the object. For a square object with the

same dimension in the phase-encoded direction as the original FOV, the relation is

given as NA = R. If the object dimension is smaller than FOV, then some pixels will

have NA < R. If the object diameter dimension is larger than L, some pixels will

have NA > R and there will be phase wrap even without SENSE FOV reduction. The

R-fold FOV reduction results in a NA-fold aliased image. For each location y, we can

write the image intensity I j(y) as s superposition of the original and the displaced

replicates:

I j(y) =
NA−1

∑
n=0

C j(y+nL/R)M(y+nL/R) j = 0,1, ...,Nc−1 (1.24)

where Nc is the number of receive coils. Depending on the specific location of y,

the number of replicates can vary. Thus, the range of summation is changeable,

as schematically shown in Figure. Here unknowns are the aliased image intensity

values M(y+ nL/R). I j(y) are known because they are simply the reconstructed

aliased images. It is convenient to generalize Eq. (1.24) to a matrix equation. With

Nc coils, we define appropriate matrices I,C, and with dimensions Nc×1,Nc×NA,

and NA×1, respectively, and rewrite Eq. (1.24) as:

I =CM (1.25)

where:

I =

















I0(y)

I1(y)
...

INc−1(y)

















,M =

















M(y)

M(y+L/R)
...

M(y+(NA−1)L/R)

















(1.26)
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and

C =











C0(y) . . . C0(y+(NA−1)L/R)
...

. . .
...

CNc−1(y) . . . CNc−1(y+(NA−1)L/R)











(1.27)

If Nc ≥ NA, Eq. (1.25) can be inverted to find the estimated transverse magnetization

M̂. The most general solution that gives maximum image SNR is the pseudo-inverse

M̂ =

[

(

C†ψ−1C
)−1

C†ψ−1

]

I (1.28)

where ψ is the Nc×Nc coil noise correlation matrix in which a diagonal element

represents noise variance from a single coil and an off-diagonal element represents

a noise cross-correlation between two coils. If Nc > NA, the inversion problem of

Eq (1.25) is overdetermined. The extra degrees of freedom are then used with the

coil-noise correlation matrix ψ to improve the SNR. If Nc = NA there are no extra

degrees of freedom available to improve the SNR. In the latter case, the coil-noise

correlation matrix can be dropped in the solution. This can be derived from the Eq.

1.25 as given by

M̂ =C−1I (1.29)

where Nc = NA, and C is a square matrix. Normally, the off-diagonal elements of

ψ are negligible, and the diagonal elements are nearly equal. Therefore, ψ can be

replaced by the identity matrix and Eq. (1.25) can be simplified as

M̂ =
[

(C†C)−1C†
]

I (1.30)

Usually, almost no SNR difference can be found in results those omitted the coil-

noise matrix from the reconstruction algorithm when coils are well decoupled.

GRAPPA

GRAPPA represents the generalized implementation of parallel imaging in the

k-space domain. Although GRAPPA shares the same acquisition scheme with

VD-AUTO-SMASH, they differ significantly in the way of reconstructing missing

k-space lines. One fundamental difference is that the individual coil signals Sk(ky)

are fit to just a single component coil ACS signal SACS
l (ky +m∆ky

), not a composite

signal, thereby deriving the linear weightings to reconstruct missing k-space lines of
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each individual coil:

SACS
l (ky +m∆ky

)∼=
Nc

∑
k=1

n
(m)
k Sk(ky) (1.31)

This procedure needs to be repeated for every individual coil, and since the coil

sensitivities also change along the readout direction, the weights for the GRAPPA

reconstruction are normally determined at multiple positions along readout direction.

After Fourier transformation, images for each coil in the receiver array are obtained.

Furthermore, GRAPPA uses multiple k-space lines from all coils to fit one single coil

ACS line, resulting in a further increased accuracy of the fit procedure and therefore

a better artifact suppression. The GRAPPA reconstruction can also be written in

matrix equations. The vector ~S represents the collected signal in each coil at some

position k and therefore has length Nc. Using GRAPPA in its simplest form, a set of

weightings n̂(m) has the dimension Nc×Nc and may shift the k-space data in each

coil by m∆K.

~S(m) = n̂(m)~S (1.32)

Different to a SMASH or VD-AUTO-SMASH, the GRAPPA algorithm results

in single-coil images, which can be combined using a magnitude reconstruction

procedure (i.e., the sum of squares). This provides a significantly improved SNR

performance, especially at low reduction factor. Furthermore, signal losses due

to phase cancellations are essentially eliminated using a magnitude reconstruction

procedure. Thus previous drawbacks on k-space-based techniques, namely, phase

cancellation problems, low SNR, and poor reconstruction quality due to a subop-

timal fit procedure, are eliminated. Furthermore, similar to SENSE, the GRAPPA

algorithm works with arbitrary coil configurations. Finally, as an additional benefit,

ACS lines used to derive the reconstruction coefficients can be integrated into the

final image reconstruction.

Sensitivity estimation

As mentioned above, successful applications of SENSE and GRAPPA are

strongly associated with accurate characterization of the coil sensitivity maps. Since

the sensitivity varies with coil loading, the sensitivities must be accessed by an

additional reference scan. This can be performed, for example, by a low-resolution

3D full k-space acquisition, which allows arbitrary slice positioning and orientation.

Thus, sensitivity maps can be derived by either one of these methods

• dividing each component coil image by an additional body coil image.
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• dividing each component coil image by a “sum of square.” image, including

phase modulation.

• dividing each component coil image by one component coil image (relative

sensitivity maps).

• an adaptive sensitivity assessment based on the correlation between the com-

ponent coil images.

In an additional numerical process, this raw-sensitivity maps need to be refined using

smoothing (i.e., minimizing the propagation of additional noise from the calibration

scan into the reconstructed image) and extrapolation algorithms (i.e., to provide coils

sensitivity information from regions where MR signal is hard to obtain).

1.3.2 Compressed sensing MRI

Compressed sensing is an effective tool to recover alias-free images from un-

dersampled k-space data, exploiting the sparsity in MR images. The successful

application of compressed sensing requires: (a) the desired image have a sparse

representation in a known transform domain, (b) the aliasing artifacts due to k-space

undersampling be incoherence in that transform domain, and (c) a nonlinear recon-

struction be used to enforce both sparsity of the image representation and consistency

with the acquired data.

The transform sparsity of MR images can be demonstrated by applying a sparsi-

fying transform to a fully sampled image and reconstructing an approximation to the

image from a subset of the largest transform coefficients. The sparsity of the image

is the percentage of the non-zero transform coefficients. For specific applications, it

is possible to get an empirical sparsity estimate by performing a clinical trial and

evaluating reconstructions of many images quantitatively or qualitatively.

The reconstruction is obtained by solving the following constrained optimization

problem:

m̂ = argmin ‖Ψm‖1

s. t. ‖Fµ − y‖2 < ε (1.33)

where m is the reconstructed image, y is the measure k-space data from the

scanner, and ε controls the fidelity of the reconstruction to the measured data. The

objective function is the ℓ1-norm to enforce sparsity.
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Chapter 2

A Generalized Deep Learning-based Reconstruction

Method for Parallel Imaging and Compressed Sensing

2.1 Introduction

In recent years there has been increasing interest in the deep learning based

magnetic resonance imaging (MRI) reconstruction. Specifically, the fully convolu-

tional neural network (FCN) with theoretically high representation capacity has been

shown effective in resolving the detailed anatomical structures from undersampled

images [33, 28, 17, 35]. The applicability of deep learning reconstruction has been

successfully demonstrated in several recent studies [33, 28, 17, 35]. Meanwhile,

in these studies, experimental simplifications were employed, and they were fixed

encoding matrix, due to the predetermined k-space undersampling scheme, coil sen-

sitivity, and image size, and developing/evaluating the reconstruction solely based on

magnitude images. There is a need for developing a flexible and practical deep learn-

ing reconstruction method for MRI, supporting changes of encoding matrix without

re-training the deep learning model and capable of processing the complex-valued

MR data. Before employing the deep learning in accelerated MRI reconstruction,

conventional methods such as parallel imaging and compressed sensing were widely

used, and they were based on the numerical pseudo-inversion of ill-posed MRI en-

coding matrix, which could be prone to reconstruction error at poor conditioning [21,

2, 15, 8]. The encoding matrix stemmed from the k-space undersampling scheme

and the inverse Fourier transfer coupled with the sensitivity encoding from multi-

channel radiofrequency (RF) coils. The traditional reconstruction involved some

gradient descent methods for minimizing the cost function of the k-space fidelity

and the regularization [15, 31, 27]. The performance of reconstruction depended on

the conditioning of the encoding matrix. There was a tradeoff between the image

artifact level and the undersampling rate as limited by the encoding capacity of coil

sensitivities, i.e., the number and the decoupling of coil elements. Nevertheless,

the parallel imaging technique with acceleration factors from R = 2 to R = 4 were

routinely used clinically [21, 2, 8, 29, 30, 20]. Based on the compressed sensing

framework, using the prior knowledge provided by regularization function [15]. The
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sparsity property of MR images in a specific transform domain, such as wavelet

domain, in combination with the incoherent undersampling in k-space, enabled the

successful application of compressed sensing to MRI reconstruction [15]. The recon-

struction performance can be significantly improved, achieving the undersampling

rate from R = 2 to R = 12.5 [11]. However, in practice, a fully randomized k-space

sampling was unattainable, as the undersampling was governed by the feasibility

of k-space trajectory designs and frequency/phase encoding choices, resulting in

insufficient incoherence and compromising the reconstruction. It should be noted

that an insufficient sparsity or incoherence would introduce artifacts such as image

blurring, caused by the loss of small coefficients in the sparse transform domain, i.e.,

a filtering effect [11].

The deep neural network could learn a prior probability distribution for MRI,

i.e., so-called manifold-learning, with application in MRI reconstruction [35]. Fur-

thermore, the generative adversarial network (GAN) has been frequently used for

learning the probability distribution of MRI (i.e., manifold) and making the pre-

diction based on the learned probability distribution [17]. Meanwhile, due to the

stochastic nature of the deep neural network, there was no guarantee for the pre-

diction to fulfill the k-space fidelity that can be described as Ax = y, where A the

encoding matrix, x the reconstructed/predicted image and y the sampled k-space

data. State-of-the-art deep learning approaches typically employed an additional

k-space fidelity layer to avoid unexpected errors in reconstruction [33, 28, 17, 1,

14]. These k-space-fidelity-encouraged methods generally fell into two categories:

unrolling of an iterative compressed sensing and parallel imaging algorithm, e.g.,

alternative direction method of multipliers (ADMM)-Net [33], and interleaving

an FCN and the data fidelity layer, e.g., deep cascaded network (Deep-Cascade)

[28], model-based image reconstruction using deep learned priors (MODL) [1], and

sampling-augmented neural network with incoherent structure (SANTIS) [14]. In

Yan Yang et al., 2016 [33], ADMM-Net was proposed for mimicking the compressed

sensing MRI reconstruction, which used a convolutional layer as sparsity term and

learning all the trainable parameters based on the dataflow of 3 or 4 iterations of

the unrolled ADMM. In another study, the Deep-Cascade was demonstrated to

perform cascaded denoising and reconstruction operations, which eliminated the

noise-like artifacts, together with the k-space fidelity enforcement [28]. Recently,

a MODL method was developed, and authors recast the denoising operation as a

regularization term [1]. In that study, a conjugate gradient algorithm was used as

the fidelity layer and embedded in the network with coil sensitivity included in the

encoding matrix [1]. This conjugate gradient algorithm and the use of coil sensitiv-

ity, i.e., applying parallel imaging, made the last-mentioned method outperformed
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several other deep learning approaches [1]. More recently, SANTIS used a sampling-

augmented training together with cycle-GAN method to improve the rodustness

against sampling pattern discrepancy [14]. Nevertheless, in all methods mentioned

above, MRI encoding matrices were fully integrated into the neural network models.

These models were trained with predetermined encoding matrices and correspond-

ing undersampling artifacts. After training, imaging configurations, including the

k-space undersampling schemes and coil sensitivities, associated encoding matrices,

must also be unchanged or changed only within predetermined sampling patterns,

during the validation and application, which could be cumbersome or to some extent

impractical for the potential clinical use.

To tackle this design challenge, we proposed a hybrid approach that combined

the FCN-based GAN with the non-neural-network ADMM implementation. The

proposed method was based on a recent deep learning image completion study,

namely One-Net [23]. Meanwhile, our modified One-Net for MRI reconstruction

can handle the complex-valued data. The objective of this study was to develop

a flexible and practical deep learning-based MRI reconstruction method and to

implement and validate the proposed method in an experimental setting, regarding

changeable k-space undersampling schemes.

2.2 Methods

We recast the One-Net into an MRI reconstruction ADMM [23]. The encoding

matrix is left out of the neural network, i.e., the GAN performs the proximal operator

for regularization based on the “learned” MRI prior probability distribution and as

one step within the ADMM loop, as shown in Figure 2.1. While the training data

for the GAN consists of images with additive spatial distributed Gaussian noise, i.e.,

no undersampling artifacts are needed for training the GAN. This setting allows the

training and the validation of neural network to be independent of the k-space fidelity

term, as the k-space fidelity enforcement demands quadratic programming using the

encoding matrix. Furthermore, the designed GAN takes the complex-valued data

as input and output. Such a design allows flexibility in the MRI acquisition and

reconstruction settings.
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Figure 2.1 We recast the One-Net into an MRI reconstruction ADMM. The

GAN performs the proximal operator for regularization based on

the “learned” MRI prior probability distribution as one step within

the ADMM loop.

2.2.1 Problem formulation

The image reconstruction for MR k-space data acquired with changeable k-

space trajectories such as Cartesian, radial, spiral et al., and parallel imaging, can

be considered as an inverse problem for the corresponding encoding matrix. We

followed the MRI reconstruction problem formulation used in l1-ESPIRiT [31]. Let

an encoding matrix/operator A to map the MR image x to the sampled k-space

data y. The operator A consists of a Fourier transform operator F , coil sensitivity

S , and a k-space sampling operator P , i.e., A = PFS [31]. The well-known

solution to the inverse problem can be formulated as an optimization problem with a

regularization term [31]:

x̄ = argmin
x
‖A x−y‖2

2 +λR(x). (2.1)

where R(x) a regularization term that introduces an MRI prior projection for the

reconstruction, and λ the regularization parameter.

The proximal operator for R(x) in the proposed GAN approach, proxR (x0), is
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defined as:

x̂ = proxR,1/λ (x0) := argmin
x
‖x− x0‖

2
2 +λR(x) (2.2a)

x̂ ∈ χ ∼ Pmodel ≈ Pdata (2.2b)

where x0 the initial, x̂ the estimate, χ the sub-space that contains MR images (includ-

ing the ground truth), Pdata the probability distribution of MR images, and Pmodel the

probability distribution of the model prediction.

Intuitively, taking the sparse constraint in compressed sensing as an analogy,

R(x) for the compressed sensing prior is a ℓ1-norm for coefficients from the wavelet

transform or total variation function which can be solved by a soft-thresholding

as the proximal operator [31]. For GAN prior definition, the R(x) is square of

the Euclidean distance between the estimate and the ground truth, i.e., ‖ x− xm ‖
2
2,

x,xm ∈ χ , where xm is the ground truth, and proximal operator for R(x) projects the

estimate onto the sub-space χ that contains MR images, approaching xm. In addition,

the Pmodel ≈ Pdata is encouraged by the “min-max”-type loss function in GAN’s

training [7].

2.2.2 ADMM implementation for separating fidelity and MRI prior projec-

tion

The objective function in Eq. (2.1) contains a fidelity term and a regularization

term. The regularization term facilitates the MRI prior projection. In an ADMM

form, fidelity and regularization terms can be separated into two sub-problems: one

quadratic programming concerning k-space fidelity and another proximal operator

for the regularization exploiting the MRI prior probability distribution. We can

rewrite the Eq. (2.1) as an ADMM problem [32]:

argmin
x,z

1

2
‖Az− y‖2

2 +λR(x)

s.t. x = z (2.3)

where λ is the regularization parameter. The augmented Lagrangian of ADMM

problem can then be expressed as [32]:

Lρ(x,z,u) = 1/2 ‖ Az− y ‖2
2 +λR(x)+ρ/2 ‖ x− z+u ‖2

2 (2.4)
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where u the dual variable and ρ the penalty parameter for the Lagrangian multiplier.

ADMM has the following iterative steps:

S1 : x(k+1)← argmin
x

λR(x)+ρ/2‖x− z(k)+u(k)‖2
2

S2 : z(k+1)← argmin
z

1/2‖Az− y‖2
2 +ρ/2‖x(k)− z+u(k)‖2

2

S3 : u(k+1)← u(k)+ x(k+1)− z(k+1) (2.5)

The x(k+1) from step S1 in Eq. (2.5) can be computed by using the generator

of GAN since S1 is designed to be the loss function for training the generator. It

can be also viewed as a proximal operator proxR, ρ
λ
(zk−uk) for the regularization

function R(x), which is given by substituting z− u for x0 in Eq. (2.2a). The step

S2 is well-posed and can be solved by the non-linear conjugate algorithm for each

z(k+1) update. It should be noted that the ADMM splits the MRI prior projection

and the k-space fidelity term, which enabled the prior projection (facilitated by the

GAN), learning a genetic MRI prior that is applicable for any encoding matrices A

in Eq. (2.5) S2.

2.2.3 GAN implementation for MRI prior projection

The consideration for the MRI prior projection introduced by the GAN has three

folds: (1) encouraging the probability distribution of data, Pdata, to be equal to that

of the generator prediction, Pmodel [7]; (2) using a proximal function loss as the

generator loss for R(x), i.e., letting the generator be the proximal operator for R(x);

and (3) using an additive spatial distributed Gaussian noise (as a random perturbation)

with MRI data to train the generator, which determines the functionality of R(x) and

is also the key for the convergence of the ADMM iteration.

Intuitively, the proximal operator for R(x) is realized by the generator of GAN,

which projects the generator input, i.e., x0 = zk− uk in Eq. (2.2a) and Eq. (2.5)

S1, onto a set of artifact-free MRI datasets, as given by the MRI prior, Pdata in Eq.

(2.2a). We also empirically find that the additive spatial distributed Gaussian noise

for training is the key ingredient that leads to the convergence of ADMM. This

finding could be explained by the following facts or observations when the ADMM

converges: (a) ADMM must converge at when zk ≈ xk; (b) when zk ≈ xk, i.e., the

zk− xk map contains minimal structural information except for spatially distributed

noise-like discrepancies; (c) in Eq. (2.5) S3, which is the dual ascent for ADMM,

the uk is the accumulative sum of the zk− xk map, with the tendency of amplifying
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discrepancies; and (d) discrepancies in uk transfers back to Eq. (2.5) S1, i.e., it inputs

uk into the generator. Therefore, GAN learns fully sampled MR image datasets

and estimates the underlying probability distribution of the data. Meanwhile, GAN

eliminates discrepancies from image features, which is iteratively performed each

time after the ADMM dual ascent step in Eq. (2.5) S3. In this way, we created a

“trap” around the ground truth, xm, implemented by training generator of GAN with

the additive noise or randomized perturbation on data, xm + ε , where ε denotes the

noise/perturbation. During the ADMM iteration, any vector x0, when close enough

to the xm, i.e., when x0 = xm + ε , will be pushed closer to xm by the generator of

GAN, which performs the prior projection function, leading to the convergence of

ADMM, as illustrated in Figure 2.2.

MR prior
x
∗

projection

z
k

z
k+1

x
k

x
k+1

Figure 2.2 ”MR prior” is a set or a manifold that contains MR images. The

ADMM splits the MRI prior projection and the k-space fidelity

enforcement into two iterative steps. The prior projection is per-

formed by the generator of GAN. GAN learns a genetic MRI prior,

so that the generator of GAN can project the zk onto the closest

MR image, xk. Another step in ADMM is encouraging the k-space

fidelity by projecting xk onto zk+1, on a convex feasible set that is

determined by the fidelity term as a series of quadratic functions

(gray curves), which can be implemented using convex optimiza-

tion algrithm outside the neural network. By doing such alternative

projections using ADMM, one can reach the intersection of two

sets, x∗, which is the final solution for the ADMM reconstruction.

As shown in Figure 2.3, the GAN in this study is composed of a U-Net generator

[24] and a Res-Net discriminator [9]. The U-Net has an encoder-decoder structure,

which can preserve fine details of images [24]. The U-Net used in this study has 6

CNN blocks on both encoder and decoder sides. The CNN block consists of repeated

application of two 3×3 convolutions (unpadded convolutions), each layer with a

rectified linear unit (ReLU) activation function. On the encoder side, the CNN block

is followed by a 2× 2 average pooling operation implemented by a stride size of
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2×2 in a convolution layer for downsampling. The CNN block of decoder side is

applied after the up-convolution and a concatenation layer, which correspondingly

merges the cropped feature map with the map that comes from the up-convolution

path. The average-pooling is used instead of the commonly used max-pooling, as

suggested by [25]. The generator input is normalized to the intensity range of [−1,1]

for both real and imaginary channels. The virtual batch normalization is also applied

after each convolution layer to improve the convergence of the network training[25].

No activation function is used for the final layer of the generator to ease the design of

generator loss in GAN. Also, as suggested by [19], a channel-wise fully connected

layer accompanied by a convolution kernel is necessary for the generator to extract

the image features at the first layer.

For training the U-Net generator, fully sampled image and image with the additive

spatial distributed noise are both used as inputs and are projected onto the closest

noise-free image, i.e., both xm and xm + ε map to xm. To deal with the complex-

valued data, we separate the complex data into real and imaginary channels for both

the generator′s input and output, as well as for discriminator′s two inputs. Also,

the additive spatial distributed Gaussian noises are combined with both real and

imaginary channels separately. The additive noise is generated independently for

each training batch. The additive spatial distributed noise is computed as ε = zp,

where p is a spatial distribution mask interpolated with bi-cubic method from a

low-resolution noise whose maximum is 1.414, and z is a pixel-wise Gaussian noise

with mean = 0 and standard deviation = 0.1.

The training of GAN encourages the output of the generator network and the

ground truth to share the same probability distribution, i.e., Pmodel ≈ Pdata in Eq.

(2.2b). Res-Net is used as the discriminator because it is effective at the classification

task, eliminating the “gradient vanishing” during the training [9]. In the Res-Net,

the first layer is a convolutional layer followed by 40 bottleneck blocks, and the last

layer is a fully connected layer. The details of the architecture can be found in [10].

We rewrite the proximal operation x(k+1) = proxR

(

zk−uk
)

using the project

symbol: x(k+1)←P
(

zk−uk
)

. Then we define the following combined loss function

for training the prior projection network, i.e., the generator loss:

min
θ

λ1 ‖ v−P(x) ‖2
2 +λ2 ‖ x−P(x) ‖2

2 +λ3 ‖ v−P(v) ‖2
2 +λ4log((D(P(v))

(2.6)

where θ trainable parameters in generator P(x), x the original image, v := x+ ε the

image with spatial distributed Gaussian noise, D(·) the discriminator, and λ1 to λ4

regularization parameters for four loss terms. The ‖ v−P(x) ‖2
2 term encourages
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the generator to eliminate the noise, i.e., encourage the projection x←P (x+ ε),

which can be considered as the regularization function R(x) in Eq. (2.2a). The ‖ x−

P(x) ‖2
2 and ‖ v−P(v) ‖2

2 stem from the proximal function for R(x), corresponding

to the first term in Eq. (2.2a), which is a necessary component to maintain stability

of the ADMM algorithm in Eq. (2.5). Intuitively, they promote projects: x←P (x)

and v←P (v), i.e., outputs are “close to” inputs for both x and v. The log(D(P (v))

term partly contributes to the Pmodel ≈ Pdata in Eq. (2.2b) when training the generator

of GAN. Briefly, Eq. (2.6) as the generator loss for GAN is designed to perform the

proximal operator for R(x), as described in Eqs. 2a and 2b. Finally, a binary cross

entropy loss is used in training the discriminator.

To summarize, the regularization has the proximal function defined as the gen-

erator loss of GAN, and the training processing of GAN also encourages learning

the prior, Pdata ≈ Pmodel , i.e., the prediction from the generator should be within the

set that follows the MRI prior probability distribution. In addition, the implemented

GAN takes the complex-valued data, as input and output by separating the real and

imaginary parts into two channels for the neural network.
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Figure 2.3 The GAN is composed of a U-Net generator and a Res-Net discrim-

inator. The generator of GAN performs the prior projection in the

ADMM. For training the U-Net generator, noise-free image and

image with the additive spatial distributed Gaussian noise are both

used as inputs and are projected onto the closest noise-free image.

2.2.4 MRI databases, pre-processing, and analysis

Data used in this study were obtained from the NYU fastMRI Initiative database

(fastmri .med.nyu.edu) [34]. As such, NYU fastMRI investigators provided data but

did not participate in analysis or writing of this report. A listing of NYU fastMRI

investigators, subject to updates, can be found at:fastmri.med.nyu.edu.The primary

goal of fastMRI is to test whether machine learning can aid in the reconstruction of
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medical images. We downloaded multi-channel k-space data for all 973 scans from

fastMRI reconstruction database [34]. The knee data have two contrast weightings,

i.e., proton-density with and without fat suppression. Scan parameters include 15

channel knee coil and 2D multi-slice turbo spin echo (TSE) acquisition, two field

strengthes (i.e., 1.5 T and 3.0 T), and other settings can be found in [34]. For the

Cartesian sampling, we resized the kneel MR images into 128×128 in k-space. We

used a relatively small image size for the proof of concept experiment because of the

lack of computation power for handling the original full-size data. We used 6745 2D

images in the training set and 1000 2D images in the testing set, respectively. Real

and imaginary parts of all 2D images were separated into two channels when inputted

into the neural network. We trained our network for 100 epochs on an NVIDIA

P6000 graphic card with batch size = 50 and Adam optimizer, using tensorflow

software (https://www.tensorflow.org/). It took 8 hours to train the neural network.

The non-neural-network part of ADMM was implemented in python language using

the MRIPY toolbox (https://github.com/peng-cao/mripy). The fidelty term in Eq.

(2.5) S1 was computed using non-linear conjugate gradient function like how it was

used in the ADMM algorithm in MRIPY. The number of ADMM iteration was set to

20 for all experiments using the proposed method.

For comparison, we also performed l1-ESPIRIT [31], GRAPPA [8], and MODL,

a deep learning reconstruction method [1].In the l1-ESPIRiT reconstruction, we set

the regularization parameter to be 0.01, using the default algorithm, i.e., the fast

iterative thresholding method. Like our approach, MODL supported the complex-

valued MRI data and utilized the parallel imaging in the reconstruction [1]. Therefore,

MODL could serve as a representative deep learning model for comparison. We

followed settings in Ref [1] when training MODL to reconstruct the undersampled

kneel data. The only difference was the undersampling mask in Ref [1] was 2D,

while we only used 1D undersampling in this study since the MR measurement was

a 2D multi-slice sequence, i.e., the frequency encoding was fully sampling. During

the experiment, the coil sensitivity map was used in l1-ESPIRIT, MODL, and the

proposed method. We applied ESPIRiT function in Berkeley MRI reconstruction

toolbox to estimate the sensitivity map from a 20× 20 calibration region in the

central k-space. For parallel imaging, the GRAPPA reconstruction was performed,

and 20 center lines were used as the auto-calibration region [8]. For all three methods,

we calculated difference maps, which were discrepancies between the reconstructed

image and the ground truth, as well as the peak signal to noise ratio (PSNR), which

was given in dB unit as the ratio of max image intensity to the root mean square of

the difference map.
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2.3 Results

The proposed method was validated in two experiments with changeable k-

space undersampling schemes, varied contrasts, due to different field strengths and

sequences, and a large amount of clinical images (N=1000 for 2D slices) those with

potentially different coil sensitivities due to variations in the subject positioning. We

also demonstrated the convergence of the proposed hybrid GAN and non-neural-

network ADMM to show their compatibility.

2.3.1 Persudo-random undersampling with compressed sensing and deep learn-

ing reconstructions

Figure 2.4 shows the comparison of knee MRI compressed sensing and deep

learning reconstructions using 15% k-space frequency encoding lines. ℓ1-ESPIRiT, a

compressed sensing method, and MODL, a deep learning approach, showed apparent

blurring effects on images. Residual aliasing artifacts were also observed in images

from MODL. Meanwhile, images reconstructed by l1-ESPIRiT were in qualitative

agreement with the ground truth in Figure 2.4. However, l1-ESPIRiT reconstruction

confused the ligament with the bulge of the tibia. While the proposed reconstruction

had successfully recovered the anterior cruciate ligament. The proposed recon-

struction also preserved more tissue boundary information, compared with those

of l1-ESPIRiT and MODL reconstructions, as shown on difference maps in Figure

2.4. The proposed method generally resulted in the highest PSNR among the three

methods, as summarized in Table 2.1. Also, for the proposed method, two sets of

images in Figure 2.4, with different undersampling schemes, as shown in Supporting

Figure S1 a and b, and two contrast weightings, were reconstructed by one trained

neural network model. This result demonstrated that the proposed method could

restore realistically undersampled MRI with both high acceleration factor (i.e., 15%

samples) and high PSNR (i.e., >34 dB).

Table 2.1 Comparison of PSNRs (in dB, mean± standard deviation, N = 1000)

for three compressed sensing and deep learning reconstructions.

Undersampling rate L1-ESPIRiT MODL Ours

15%+10% 32.57±1.78 29.49±3.08 34.81±1.79

20%+10% 33.74±1.73 30.13±3.04 35.60±1.87
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l1-ESPIRiT MODL Ours Ground truth

Figure 2.4 Comparison of knee MRI compressed sensing and deep learning re-

constructions using 15% k-space frequency encoding lines and 1D

undersampling along kx. (first row) Proton density weighted TSE

knee images reconstructed from l1-ESPIRiT, MODL, and proposed

method, and full k-space ground truth. (second row) Magnified

difference maps (×10) for three reconstruction methods in the first

row. The quantified PSNRs were 33.72 dB, 34.68 dB, and 37.37 dB

for l1-ESPIRiT, MODL, and proposed method, respectively. (third

and fourth rows) The same comparison for proton density weighted

TSE with fat suppression on a different volunteer. The quantified

PSNRs were 32.75 dB, 25.72 dB, and 34.16 dB for l1-ESPIRiT,

MODL, and proposed method, respectively. l1-ESPIRiT, a com-

pressed sensing method, and MODL, a deep learning approach,

showed apparent blurring effect on images such as in challenging

cruciate ligament region, and increased error on edges of anatom-

ical structures. Residual aliasing artifacts were also observed in

reconstruction results from MODL. The proposed method generally

resulted in the highest PSNR among three methods, as summarized

in Table 1.
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2.3.2 Parallel-imaging-type undersampling with GRAPPA and deep learning

reconstructions

Figure 2.5 shows the comparison of knee MRI parallel imaging and deep learning

reconstructions using simulated 3-fold acceleration, i.e., R = 3, as the k-space mask

shown in Supporting Figure S1c. The proposed method had a better suppression

of the aliasing artifacts, compared with that of GRAPPA reconstruction. The noise

amplification was observed in GRAPPA reconstructed images, which may lead to a

slight degradation of image quality around the condyle structure. Meanwhile, the

proposed method generally provided higher PSNR compared with that of GRAPPA

at high accelerations, as summarized in Table 2.2. With R=2, the GRAPPA and

the proposed methods had similar PSNRs, and both achieved the PSNR >40 dB,

i.e., < 1% root mean square artifact level, which means both can achieve near

identical reconstruction. With the increase of acceleration factor, GRAPPA′s PSNR

decreased drastically, i.e., from 41 dB to 29 dB; on the other hand, the PSNR of

proposed method only reduced slightly, i.e., from 40 dB to 35 dB. The proposed

method showed a significant improvement over GRAPPA reconstruction at high

accelerations. Furthermore, in this experiment, we applied the same neural network

model that was used in the previous compressed sensing experiment, but with

a different k-space undersampling scheme, as shown in Supporting Figure S1c.

This result demonstrated the proposed method generally applicable for different

experimental settings, i.e., compressed sensing or parallel imaging or both, without

the need of re-training the neural network model.

Table 2.2 Comparison of PSNRs (in dB, mean± standard deviation, N = 1000)

for parallel imaging and deep learning reconstructions.

Undersampling factor GRAPPA Ours

R=2 41.36±3.80 39.51±3.64

R=3 35.44±3.18 37.53±4.06

R=4 29.49±2.57 35.29±3.69
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GRAPPA Ours Ground truth

Figure 2.5 Comparison of knee MRI parallel imaging and deep learning recon-

structions using simulated 3-fold acceleration, i.e., R = 3, and 1D

undersampling along kx. (first row) Proton density weighted TSE

knee images reconstructed from GRAPPA and proposed method,

as well as full k-space ground truth. (second row) Magnified differ-

ence maps (×10) for two reconstruction methods in the first row.

The quantified PSNRs were 38.42 dB and 42.55 dB for GRAPPA

and proposed method, respectively. (third and fourth rows) The

same comparison for proton density weighted TSE with fat suppres-

sion on a different volunteer. The quantified PSNRs were 33.83

dB and 37.19 dB for GRAPPA and proposed method, respectively.

GRAPPA caused noise amplification in the low sensitivity region of

RF coils, i.e., the center of FOV. Meanwhile, the proposed method

generally provided higher PSNR compared with that of GRAPPA

at high accelerations, as summarized in Table 2.

26



2.3.3 Convergence of proposed hybrid of GAN and non-neural-network ADMM

In the proposed reconstruction scheme, the non-neural-network ADMM was

used as the outer iteration in combination with the GAN implementation of MRI

prior projection. Special consideration was made to ensure the compatibility and the

convergence of the iteration. Figure 2.6 shows the ‖x− z‖2
2 and ‖y−Ax‖2

2 (defined

in Eq. (2.5)) decreased with the number of iteration for a representative case. The

‖y−Ax‖2
2 measured the residual error of the fidelity term for reconstructing MR

image, x, regarding the measured k-space, y. The monotonous decay of ‖y−Ax‖2
2

indicated the fidelity term in ADMM, i.e., the non-neural-network part of ADMM

in Eq. (2.5) S2, was compatible with the neural network implementation of the

proximal operation, i.e., in Eq. (2.5) S1. The x− z was the gradient of the augmented

Lagrangian equation for ADMM. The ‖x− z‖2
2 decayed nearly to 0, confirming the

convergence of ADMM.
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Figure 2.6 Convergence of the proposed method for a representative case. Both

‖x− z‖2
2 and ‖y−Ax‖2

2 (defined in Eq. (2.5)) decreased with the

number of iteration. The ‖y−Ax‖2
2 measured the residual error of

the fidelity term in ADMM. The monotonous decay of ‖y−Ax‖2
2

indicated the fidelity term was compatible with the neural network

implementation of the proximal operation (as in Eq. (2.5) S1).

The x− z was the gradient of the augmented Lagrangian equation

for ADMM. The ‖x− z‖2
2 decayed to 0 at the end of iteration,

confirming the convergence of ADMM. The scale of y-axis was

normalized.

2.4 Discussion

Previous deep learning reconstruction studies used to train the neural network

with fixed encoding matrices [33, 28, 17, 35]. In the conventional paradigm, such
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experimental simplification was unavoidable because most available deep neural

networks were designed using the feedforward architecture, i.e., they are not recurrent

nor interactive; however, MRI reconstruction required the iteration of regularization

and k-space fidelity enforcement. Meanwhile, for a decade, the compressed sensing

and parallel imaging researches have established a set of algorithms basing on

the convex optimization for various MR acquisition settings and applications [15,

31, 27, 11]. These MR acquisition settings could be varied from Cartesian to

non-Cartesian, from 2D to 3D, from static to dynamic acquisition et al., arguing

the need of building a deep learning function that can be inserted in the existing

MRI reconstruction algorithms, as an adaptive regularization function or an image

prior. To our knowledge this is the first study that demonstrated the feasibility

of building a compatible GAN-regularization for a non-neural-network ADMM,

a widely used algorithm for MRI reconstruction. In this study, one trained neural

network model can be applied to different reconstruction tasks, taking advantage of

the separable equations of the MRI prior projection and the fidelity enforcement. Our

result demonstrated the initial capacity of such hybrid GAN and non-neural-network

ADMM approach for improving the reconstruction performance of both parallel

imaging and compressed sensing, evaluated using realistic undersampling schemes

and sufficient sample size, i.e., N=1000, two contrast weightings, and two field

strengths.

Our method can be applied to MRI reconstruction with flexibility to change the

number of RF coils or choosing different RF coils, vary the subject positioning that

can affect the coil sensitivity, and scan with various undersampling schemes or types

of readout trajectories, in contrast to fixed acquisition settings in existing deep learn-

ing methods [33, 28, 17, 35]. For example, SANTIS [14] used an embedded fidelity

term in the neural network, which was trained with predetermined but augmented un-

dersampling schemes. MODL [1] technically supported changeable sensitivity maps,

but it used a conjugated gradient method inside the neural network. These previous

deep learning methods all required MRI acquisition setting unchangeable, such as the

number of coils and the type of MRI trajectory or the distribution of undersampling,

due to encoding matrces were embedded in the neural network and undersampling

artifacts were used for training the network. On the other hand, the proposed method

as a regularization can be inserted into the existing non-neural-network ADMM

algorithm for compressed sensing and parallel imaging reconstructions. Therefore,

the proposed method can be directly applied to a broad range of accelerated MRI

applications. Also, the proposed method is readily applicable to the non-Cartesian

sampled data, for which MRIPY toolbox (https://github.com/peng-cao/mripy) with

functions, such as ADMM and nonuniform fast Fourier transform, can be utilized.
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In this initial experiment, we focused on demonstrating the utility of the proposed

method in classic compressed sensing and parallel imaging reconstructions, and we

used the knee MRI to verify the theory. However, the proposed method should be

generally applicable for most MRI applications.

Our method showed a slight smoothing effect on the image texture at high

accelerations; although, with 15% of k-space data, the reconstructed image had

PSNR >34dB with the root mean square artifact level below 2.0%. This smoothing

effect could be partly caused by the use of l2 loss when training the generator of

GAN and partly from the high acceleration. Recent deep learning study showed the

benefit of using a perceptual loss for better resolving the texture of natural images

[12]. The advantage of using perceptual loss could be investigated in the future.

Also, ADMM had two tunable parameters in Eq. (2.5): λ , an adjustable parameter

for regularization, and ρ , a setting empirically chosen for the robustness of ADMM

when applied to non-convex regularization function. In this study, we found ρ should

be adjusted carefully to reduce the smoothing effect while maintaining the fidelity

and the iteration convergence. This additional tuning step for ρ was likely related to

the non-convex nature of the neural-network-based regularization. As tested in the

experiment, additive spatial-distributed Gaussian noise for training the GAN was

an essential ingredient for the convergence of ADMM, reflecting the complexity of

adapting the neural network to the conventional ADMM method. Further studies on

preserving the image texture and straighten the implementation of optimization to

be compatible with neural network regularization are currently undergoing in our

lab. Finally, the proposed deep neural network could be modified as a patch based

U-Net. By doing patch based rather than the current whole image approach, one

could overcome the current GPU memory limitation and enable variable image size

in the reconstruction. This will also be investigated in the future experiment.

2.5 Conclusion

In this study, we demonstrated a generalized deep-learning-based MRI recon-

struction method that utilized the MRI prior probability distribution to improve

the performance of compressed sensing and parallel imaging reconstructions. Like

conventional iterative reconstruction algorithms, k-space fidelity in proposed hybrid

approach was enforced by the least-square term and implemented outside the neu-

ral network, which allowed the high flexibility in MRI acquisition configuration,

including k-space undersampling schemes and RF coil settings. This is the first

study that confirmed the feasibility and applicability of the deep neural network as a
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regularization function in a non-neural-network ADMM reconstruction algorithm.

For quantitative comparison, our methods achieved highest PSNR, as well as 30%

and 49% artifact reductions for compressed sensing and parallel imaging reconstruc-

tions, compared with l1-ESPIRiT, GRAPPA, and MODL, showing great potential in

clinical applications.
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Chapter 3

Reconstruction Using Deep Bayesian Estimation

3.1 Introduction

Before the introduction of deep learning into MRI reconstruction, the convex

regularization-based sparse or low-rank algorithm was commonly used under com-

pressed sensing framework [15]. The convex regularization ensured the convergence

of the iterative algorithm to achieve a globally optimal solution, i.e., an artifact-

reduced MR image [15]. The convex regularization can impose a prior knowledge

such as the sparsity in total variation or wavelet domain for MR image. The ℓ1 regu-

larization exploited the sparsity of MR images in the transform domain and served

as an analytical prior in compressed sensing reconstruction [15]. The analytical

prior due to the deduction of a convex regularization ensured the convergence of the

algorithm and the generalization. Besides, the dictionary learning or the low-rank

regularization was an extension of analytical prior, providing an improvement over

the ℓ1 regularization in certain compressed sensing application [22]. In the design

of such analytical prior, the model selection mainly focused on the compression

and representation capacity of the regularization and the optimization of parameters

for eliminating the reconstruction artifacts [13]. Furthermore, deep learning stud-

ies, using models stemmed from the analytical prior, focused on unrolling iterative

optimization algorithm, which was designed to solve the convex regularized recon-

struction problem, and replacing the regularization function with the deep learning

model [33, 28, 17, 1]. However, the convexity of the regularization in analytical

prior may not be easily replicated by the deep learning model, posing a challenge in

the generalization.

With the advent of the deep neural network, research started shifting the paradigm

to structured feature representation of MRI, such as cascade, deep residual, and gener-

ative deep neural network [33, 28, 17, 1]. Especially method proposed in [33] recast

the compressed sensing reconstruction into a specially designed generative deep

neural network that still partly utilized the analytical data fidelity and regularization

terms. However, the compromise did exist, such as the lack of flexibility, when adapt-

ing to a generative MRI reconstruction. Specifically, the lack of explicit statistical
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assumption and induction (e.g., they mixed the image prior and the MRI encoding)

caused those deep learning methods to performed poorly when generalized to a

changeable MRI acquisition setting, e.g., under-sampling scheme, radio-frequency

coil, and matrix size or spatial resolution; though they may show improved per-

formance in some predetermined acquisition settings or pre-trained imaging tasks.

Therefore, in previous studies, the objective was training a nonspecific deep neural

network with data inconsistency loss in mimicking analytical optimization.

To tackle this design challenge in generalization, in this study, we applied a

statistical representation of an existent MRI database, i.e., an image prior, to Bayesian

inference. Compared with the analytical optimization approach, Bayesian inference

was naturally compatible with deep learning-based prior in a statistical manner. This

approach was based on a recent study on the deep learning-based image completion

that demonstrated a pixel convolution neural network (pixelCNN++) applied to the

Bayesian inference [26]. In [26], posterior distribution p(x|y) was the probability of

Bayesian model parameters in image prior x given the observation y. Following the

well-known maximum a posteriori estimation (MAP), Bayesian inference estimated

parameters of the image prior x through maximizing the likelihood of the prior. To

make this inference tractable, in [26], authors proposed to use a generative deep

neural network for modeling image prior, i.e., NET(x) = p(x), through a pixel-wise

predictive model, i.e., the pixel CNN. In this study, concerning MRI reconstruction,

MR images were from the image prior and model parameters, x; while the measured

k-space data were the observation, y. The MRI encoding equation can determine

the k-space data likelihood, p(y|x), which was a constant for a certain noise level in

the measurement and was ignored in MAP. Because the relation between acquired

k-space data and the image was deterministic, i.e., MRI acquisition setting could not

affect the p(y|x); thereby, the Bayesian inference in such MRI reconstruction would

be solely based on the generic image prior. To summarize, the Bayesian inference

could utilize the image prior in MRI reconstruction through a statistical model on

pixel-wise dependencies of MR images, which was generic because of its decoupling

with the changeable MRI acquisition.

This paper presented a generic and interpretable deep learning-based reconstruc-

tion framework, employing the MRI prior and Bayesian inference. The proposed

framework was capable of exploiting the MRI database with a generative prior model,

regardless of the changeable MRI acquisition settings. Also, the reconstruction was

achieved by a series of inferences those employed the maximum likelihood of pos-

terior with the image prior, i.e., iteratively applying the Bayesian inference. The

reconstruction iterated over the data fidelity enforcement in k-space and the image
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refinement with the Bayesian inference. During the iteration, algorithms used were

gradient ascent and projected sub-gradient methods performed outside the neural

network, which were compatible with changeable MRI acquisition settings. The

method is theoretically described based on the methodology proposed by others [26]

and then demonstrated in different MRI acquisition scenarios. The robustness and

the reproducibility of the algorithm were also validated in experiments.

3.2 Theory

In this theory section, we discuss about how to utilize MR image dataset in a

tractable way with the generative network.

3.2.1 Statistical approach to modelling MR image reconstruction

Let the vector space X represent the MR image space and the vector Y represent

the MR raw k-space space. The model of image reconstruction is formulated with

Bayes’ theorem as following:

f (x|y) =
f (y | x)g(x)

f (y)
,x ∈ X ,y ∈ Y (3.1)

where f (y | x) is given by the data model that models how the measured k-space data

y is generated from a particular image x and g(x) is the prior model of the image. It

should be noted that the image x is the Bayes model’s parameter conditional on the

k-space data y. The prior model g(x) is learned from a huge dataset of MR images

which are samples from the vector space X . The data model is given by imaging

principles in terms of signal generation, k-space encoding, and sampling. The image

reconstruction is achieved by exploring the posterior f (x | y) by a proper estimator.

Here, we use maximum a posterior (MAP) estimator which maximizes the posterior

probability. That is to say the estimator gives the ’most likely’ image x̂ given the

measured k-space data y. The reconstruction image x̂ is given by:

x̂MAP(y) = argmax
x∈X

f (x | y) = argmax
x∈X

f (y | x)g(x). (3.2)

In the following section, the deep learning based approach to designing the computa-

tionally tractable prior model g(x), the data model of MR data acquisition f (y | x)

and the computationally feasible means for maximizing the posterior f (x | y) are

specified.
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3.2.2 Scalable prior model of MR images

We utilize the deep autoregressive network as our prior model, which gives the

predicted mixture distribution of the input MR image. In our model, we assume that,

with respect to each voxel, there is a latent intensity ν with a continuous distribution

which gives representation to real channel’s signal intensity or imaginary channel’s.

Like in the VAE and pixel CNN++ [13, 26], the distribution of ν is a mixture of the

logistic distribution, given by

ν ∼
K

∑
i=1

πilogistic(µi,si). (3.3)

Here, πi is the mixture indicator, µi and si are the mean and scale of logistic distri-

bution separately. We could calculate the probability on each observed sub-voxel ν

with following equation:

P(ν ;π,µ,s) =
K

∑
i=1

πi[σ(ν +0.5−µi)/si−σ(ν−0.5−µi)/si] (3.4)

modification needed

Ci,j

xi,j

Figure 3.1 The conditional model. xi, j is conditional on all the voxels on its

up and left.

Furthermore, following Ref [26, 18], the voxel is not only conditioned on whole

voxels up and to the left in an image as showed in Fig ‘3.1, but also modelled

with joint predictive distributions over real and imaginary channel. The very first

voxel’s real channel is predicted with a mixture of logistics as described in Eq (3.3).

We assume that the means of mixture components of imaginary channel is linearly

dependent on real channel. The conditional distribution of the subsequent voxel
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(Re(xi, j), Im(xi, j)) at position~r = (i, j) is given by

p(xi, j|Ci, j) = p(Re(xi, j), Im(xi, j) |Ci, j) =P(Re(xi, j) | µRe(Ci, j),sRe(Ci j))× (3.5)

P(Im(xi, j) | µIm(Ci, j,Re(xi, j)),sIm(Ci, j))

µIm(Ci, j,Re(xi, j)) = µIm(Ci, j)+α(Ci, j)Re(xi, j) , (3.6)

where the Ci, j denotes the context information which is comprised of the mixture

indicator and the previous voxels, α is the coefficient which is related to mixture

indicator and previous voxels. We assume that mixture indicator is shared across all 2

channels. The joint distribution of whole pixels on an image vector x= (x(1), ...,x(n
2))

can be expressed as following:

p(x;π,µ,s) = p(x(1))
n2

∏
i=2

p(x(i) | x(1), ..,x(i−1)) (3.7)

The network N (x,Θ) is trained by the maximizing of the likelihood, given by

Θ̂ = argmax
Θ

p(x;N (x,Θ)), (3.8)

where Θ is the network’s parameters to be trained. It should be noted that the

output of the network N (x,Θ) is the predicted parameters (π,µ,s) which give

representation to each voxel’s intensity distribution. Here, we defined the prior

model g(x) as

g(x) = p(x;N (x,Θ̂)) (3.9)

Thus far, we establish a prior model for the image x from MR image space X with the

state-of-art autoregressive network, and we can view this prior model as data-driven

tool which utilizes the existing dataset in a computationally tractable way. The

network used in this paper shares the same architecture proposed in Ref [26] and the

parameters are listed in appendix.

3.2.3 Data model of k-space acquisition

The image x(~r) is in the representation of the instant transverse magnetization

after the excitation if the relaxation is not taken into consideration. The signal

generated in the receiver coil is the k-space data under the Fourier encoding scheme.

Because the acquisition of k-space is achieved by repeated experiments, it is assumed

that the T ∗2 weighted effect on each voxel is the same[4]. The measured k-space data

35



π µ s α

Convolutional connection

Identity connection

ResNet block

128× 128

64× 64

32× 32 32× 32

64× 64

128× 128

x

Figure 3.2 The architecture of the generative network.

is given by

y = Ax + ε, (3.10)

where A is the system matrix and ε is the noise. The matrix A commonly consists of

Fourier matrix, sampling trajectory and coil sensitivity(response pattern)[20], which

serves as the bridge between the MR image space X and the raw k-space space Y . It

should be noted that the encoding matrix is realized by corresponding operation such

as FFT, NUFFT and Radon transform for the sake of high computational efficiency.

3.2.4 Reconstruction by maximizing the posterior

In the following, we give the derivation of the maximize the posterior probability.

Substituting Eq. (3.9) into the log of the third equality of Eq. (3.2) yields

x̂MAP(y) = argmax
x∈X

log f (y | x)+ log p(x |N (x,Θ̂)) (3.11)

From the data model, we know that the likelihood term f (y | x) has less uncertainty

with the presence of the imaging principles. Even though the noise and measurement

error has potential to induce uncertainty, the likelihood is approximated to a constant

with the dominant uncertainty of x. Hence, Eq (3.11) can be rewritten as

x̂MAP(y) = argmax
x∈X

log p(x |N (x,Θ̂)) s.t. y = Ax + ε (3.12)

The equality constraint to data consistency is the result of the elimination of the

likelihood term. The projected subgradient method was used to solve the equality

constrained problem [3]. Ref [3] gives the way to computing gradients through
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random variables for deep generative models and refers this strategy as stochastic

backpropagation. We can use tensorflow to do such stochastic backpropagation

and get the subgradient ∇x logg(x). What’s more, we notice that the dropout is

compulsory when use the gradient to update the voxels x, which is investigated

theoretically in Ref [6]. The dropout in the posterior approximation serves as the

representation of model uncertainly which yields a considerable improvement in

predictive log-likelihood. Therefore, the reconstruction from the maximization of

the posterior f (y | x) has follow steps:

1. Get the descent direction ∇x(k) logg(x(k))

2. Pick a step size αk = 1/k

3. Update z(k+1) = x(k)−αk∇x(k) logg(x(k))

4. Projection x(k+1) = argmax
x∈X

1
2
‖x− z(k+1)‖2

2

The projection of z onto {x | y = Ax + ε} is given by

P(z) = z−A∗(AA∗)−1(A(x)− y). (3.13)

So far, we have incorporated the tractable prior model g(x) into the reconstruction of

x through the maximization of the posterior. In the following, the superiority of the

proposed reconstruction framework is demonstrated in several sorts of reconstruction

modality.

3.3 Experiments

3.3.1 MRI data and pre-processing

For knee imaging, we downloaded multi-channel k-space data for all 973

scans from fastMRI reconstruction database [34]. As such, NYU fastMRI in-

vestigators provided data but did not participate in analysis or writing of this re-

port. A listing of NYU fastMRI investigators, subject to updates, can be found

at:fastmri.med.nyu.edu.The primary goal of fastMRI is to test whether machine

learning can aid in the reconstruction of medical images. The knee data had two

contrast weightings: proton-density with and without fat suppression (PDFS and PD).

Scan parameters included 15 channel knee coil and 2D multi-slice turbo spin-echo

(TSE) acquisition, and other settings could be found in Ref. [34].
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For brain MRI, we collected 2D multi-slice images T1 weighted, T2 weighted,

T2 weighted FLAIR, and T2∗ weighted brain images from 16 healthy volunteers

examined with clinical standard-of-care protocols. All brain data were acquired

using our 3T MRI (Philips, Achieva). An eight-channel brain RF coil was used.

T1 weighted, T2 weighted, and T2 weighted FIAIR images were all acquired with

TSE readout. Meanwhile, T2∗-weighted images were obtained using a gradient-echo

sequence. Brain MRI parameters for four contrast weightings were listed in Table

3.1.

Training images were reconstructed from 15 and 8 channels (for knee and brain

MRI, respectively) k-space data without undersampling. Then, these image datasets

after coil combination were scaled to a magnitude range of [−1,1] and resized

to an image size of 256×256. The training of PixelCNN++ model required a

considerable computational capacity when a large image size was used. In this study,

the 128× 128 was the largest size that our 4-GPUs server could handle. Hence,

the original 256×256 images were resized into 128×128 low-resolution images

by cropping in k-space for knee MRI. For brain MRI, we split each raw 256×256

image into four 128×128 image patches, before fed into the network for training.

Real and imaginary parts of all 2D images were separated into two channels when

inputted into the neural network. For knee MRI, 15541 images were used as the

training dataset, and 1000 images were left for testing. For brain MRI, 1300 images

were used as the training dataset, and 300 images were left for testing.

Table 3.1 The scan parameters of different weightings used in brain MRI

experiments.

Type Dimension Voxel(mm) TSE factor TR/TE(ms) TI

T1 256×256×24 0.9× 0.9× 4 7 2000/20 800

T2 256×256×24 0.9× 0.9× 4 13 3000/80 -

FLAIR 256×256×24 0.9× 0.9× 4 31 8000/135 135

T2∗ 256×256×28 0.9× 0.9× 4 - 770/16 -

3.3.2 Deep neural network

The PixelCNN++ was modified from the code in https://github.com/openai/pixel-

cnn. We implemented the reconstruction algorithm using Python, as explained in

Eq. 3.13 and Appendix. With the trained prior model, we implemented the iterative
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reconstruction algorithm for maximizing the posterior while enforcing the k-space

data fidelity (as explained in Appendix and Fig. 3.3). Only two deep learning models

were trained and utilized, one for knee MRI with two contrast weightings, and

another for brain MRI with four contrast weightings. These two models can support

all experiments performed in this study with variable undersampling patterns, coil

sensitivity maps, channel numbers, image sizes, and trajectory types. Our networks

training was performed in Tensorflow software, and on four NVIDIA RTX-2080Ti

graphic cards. Other hyperparameters were 500 epochs, batch size = 4, and Adam

optimizer. It took more than five days to train the network for knee dataset and two

days for brain dataset under the above mentioned configuration.

3.3.3 Parallel imaging and ℓ1 or ℓ2 regularization driven reconstruction

The GRAPPA reconstruction was performed with block size of 4, and 20 central

k-space lines as the auto-calibration area [8]. We simulated GRAPPA accelerations

with undersampling factors from 2 to 4. The representative undersampling masks

were shown in Supplementary Figure 1. We chose l1-ESPIRIT and MODL [1]

as baseline methods for comparison. They were analytical regularizations. The l1-

ESPIRIT exploited the sparsity of image, and the MODL was a deep learning method

for compressed sensing reconstruction, trained via minimizing l2 reconstruction error.

In the l1-ESPIRiT reconstruction, we set the l1 regularization parameter to be 0.01,

using BART software. One reason for choosing MODL was that it supported the coil

sensitivity map for applying paralleling imaging. We followed settings in Ref [1]

when training MODL to reconstruct the undersampled knee data. The only difference

was the k-space mask in Ref [1] was 2D undersampled, while in the current study

the 1d undersampling was applied. The central 20 k-space lines were sampled which

account for 7% of the full k-space of 256×256 image. The others in the outer region

were picked randomly with a sampling rate.

For the proposed method, MR images with 256×256 matrix size were recon-

structed, using the prior model in Eq. (3.9) that was trained by 128×128 images or

image patches. During inference, the 256×256 image was split into four 128×128

patches for applying the prior model, as shown in Figure 3.3. After updating s(k+1),

four patches for one image were concatenated to form an image with the original size

of 256×256, before it was projected onto {x | y = Ax + ε} in Eq. (3.13). The de-

tailed algorithm was presented in Appendix. In this method, we reconstructed images

with 256×256 matrix size, using the prior model that was trained with 128×128

images g(x), in Eq. 3.9. To reconcile this mismatch, we split one 256×256 image
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into four 128× 128 patches for applying the prior model. After updating s(k+1),

four patches for one image were merged to form an image with the original size

of 256×256. Then the merged image was projected onto {x | y = Ax + ε} in Eq.

3.13. Further more, the random shift along phase encoding direction was applied to

mitigate the stitching line in-between patches.
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Figure 3.3 Flowchart illustrates the proposed reconstruction algorithm.

3.3.4 Non-Cartesian k-space acquisition

In this experiment, spiral sampled k-space from the acquired T2∗-weighted k-

space data was simulated. The method proposed in Ref [16] was used to design the

spiral trajectory. The full k-space coverage required 24 spiral interleaves for the

spatial resolution used in this study. The spiral trajectory was shown in Supplemen-

tary Figure 1. Besides, the implementation of non-uniform fast Fourier transform

was based on the method in Ref [5]. For comparison, we used the iterative SENSE,

i.e., conjugate gradient SENSE (CG SENSE), proposed in Ref [20], as a baseline

method.

3.4 Results

3.4.1 Parallel imaging

Figures 3.4-3.7 show the comparison of knee and brain MRI reconstructed

using GRAPPA and proposed method. The proposed method had an improved

performance in recovering brain and knee image details and reducing the aliasing

artifacts, compared with GRAPPA. As expected, parallel imaging amplified the noise

in the low coil sensitivity region and along the undersampled dimension. On the other

hand, error maps demonstrated in Figure 3.4-3.7 showed that the proposed method

effectively eliminated the noise amplification. Table 3.2 presents the comparison

40



of GRAPPA reconstruction and proposed method for 100 knee MRI testing cases

and 100 brain MRI testing cases. With the increase of the undersampling factor,

the PSNR of the proposed method decreased less, compared with that of GRAPPA.

Meanwhile, the GRAPPA achieved an almost ”invisible-loss” (PSNR > 40 dB) with

acceleration factor R = 2 in brain MRI. The proposed method still showed 8dB

improvement with the same acceleration factor.

Table 3.2 PSNR comparison (in dB, mean ± standard deviation, N = 100) for

parallel imaging and the proposed method on knee and brain MRI.

Undersampling factor organ GRAPPA Ours

R=2 knee 40.98±4.20 45.64±3.24

R=3 knee 34.87±3.38 41.71±3.42

R=4 knee 29.42±2.46 38.44±3.64

R=2 brain 37.81±4.7 48.40±2.18

R=3 brain 31.72±3.20 45.39±2.65

R=4 brain 28.85±2.87 43.58±2.66

GRAPPA Ours Ground truth

PSNR(dB) 33.21 46.27

NMSE(%) 4.46 0.22

Figure 3.4 Comparisons on FLAIR-T2 weighted image reconstruction, us-

ing parallel imaging and the proposed reconstruction with R=3

acceleration and 256×256 matrix size.
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GRAPPA Ours Ground truth

PSNR(dB) 33.49 44.33

NMSE(%) 1.61 0.14

PSNR(dB) 30.11 41.58

NMSE(%) 11.06 0.79

Figure 3.5 Comparisons on PD and PDFS contrasts using GRAPPA and the

proposed reconstructions with R=3 acceleration and 256× 256

matrix size. The intensity of error maps was five times magnified.

The proposed method effectively eliminated noise amplification

and aliasing artifact in GRAPPA reconstruction.
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GRAPPA Ours Ground truth

PSNR(dB) 34.88 47.62

NMSE(%) 4.49 0.24

Figure 3.6 Comparisons on T1 weighted image reconstruction, using parallel

imaging and the proposed reconstruction with R=3 acceleration and

256×256 matrix size.

GRAPPA Ours Ground truth

PSNR(dB) 33.18 48.31

NMSE(%) 2.64 0.10

Figure 3.7 Comparisons on T2 weighted image reconstruction, using parallel

imaging and the proposed reconstruction with R=3 acceleration and

256×256 matrix size.
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3.4.2 Compressed sensing reconstruction

In Figures 3.8-3.11, the ℓ1-ESPIRiT had caused the apparent image blurring for

both knee and brain MRI results. Residual aliasing artifacts were also observed

in reconstruction results from ℓ1-ESPIRiT and MODL. Meanwhile, images recon-

structed by ℓ1-ESPIRiT were in qualitative agreement with the ground truth in

Figures 3.8-3.11. While the proposed reconstruction recovered most anatomical

structures and sharp boundaries in knee and brain MR images, compared with those

from ℓ1-ESPIRiT and MODL reconstructions, as shown on error maps in Figure

3.8-3.11. Tables 3.3 summarized ℓ1 regularization reconstruction, MODL, and pro-

posed reconstruction results. The proposed method generally showed more than 5

dB PSNR improvement compared with ℓ1-ESPIRiT and MODL.

Table 3.3 PSNR comparison (in dB, mean ± standard deviation, N = 100) for

compressed sensing and the proposed method on knee and brain

MRI.

Undersampling rate organ ℓ1-ESPIRiT MODL Ours

15% + 7% knee 29.33±2.82 27.63±3.41 35.34±3.53

20% + 7% knee 31.51±3.60 29.29±3.76 37.45±3.81

15% + 7% brain 32.86±3.46 30.60±2.78 39.78±2.83

20% + 7% brain 34.72±3.89 32.46±2.95 41.24±2.81
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ℓ1-ESPIRiT MODL Ours Ground truth

PSNR(dB) 36.32 33.79 43.47

NMSE(%) 3.22 5.78 0.62

Figure 3.8 Comparison of compressed sensing and deep learning approaches

for T1 weigted, using 22% 1D undersampled k-space and 256×256

matrix size.

ℓ1-ESPIRiT MODL Ours Ground truth

PSNR(dB) 34.23 32.98 42.41

NMSE(%) 2.56 3.41 0.39

Figure 3.9 Comparison of compressed sensing and deep learning approaches

for T2weighted image reconstructions, using 22% 1D undersampled

k-space and 256×256 matrix size.
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ℓ1-ESPIRiT MODL Ours Ground truth

PSNR(dB) 36.19 35.61 41.53

NMSE(%) 2.25 2.56 0.66

Figure 3.10 Comparison of compressed sensing and deep learning approaches

for FLAIR-T2 weighted image reconstructions, using 22% 1D

undersampled k-space and 256×256 matrix size.
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ℓ1-ESPIRiT MODL Ours Ground truth

PSNR (dB) 34.55 34.16 40.92

NMSE(%) 2.69 2.94 0.56

PSNR(dB) 32.59 33.33 34.15

NMSE(%) 7.02 5.9 4.9

Figure 3.11 Comparison of different methods on PD and PDFS contrasts, using

27% 1D undersampled k-space and 256×256 matrix size. The

intensity of error maps was five times magnified. The proposed

method substantially reduced the aliasing artifact and preserved

image details in compressed sensing reconstruction.

3.4.3 Preliminary result in non-Cartesian MRI reconstruction and quantita-

tive susceptibility mapping (QSM)

In this study, we used T2∗ weighted gradient-echo images to simulate the spiral

MRI data with 4-fold acceleration. The reconstructed images from the CG SENSE
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and the proposed method were compared. The proposed method showed apparent

improvement regarding the artifact reduction and the preservation of T2∗ contrast

between gray matter and white matter. Meanwhile, the proposed method also showed

a slight denoising effect on the reconstructed image compared with the ground truth.

Noted that the same deep learning model used in the previous Cartesian k-space

reconstruction experiments in Figures 3.4-3.7 and 3.8-3.10 was applied for spiral

reconstruction, without the need of re-training the deep learning model. Figure

3.13 shows the preliminary result from the proposed accelerated reconstruction in

QSM with 4-fold acceleration. Noted that the same deep learning model used in the

previous brain experiments was applied to this experiment, with phase information

preserved in all reconstructed images. The proposed deep learning method also

showed an apparent de-noising effect on QSM maps, while still preserved the major

phase contrast even with high acceleration.

CG SENSE Ours Ground truth

PSNR(dB) 22.52 37.18

NMSE(%) 15.69 0.54

Figure 3.12 Comparison of the CG SENSE and proposed reconstruction for

simulated spiral k-space with 4-fold acceleration (i.e., 6 out of

24 spiral interleaves), acquired by T2∗ weighted gradient echo

sequence. The intensity of error maps was five times magnified.

The proposed method substantially reduced the aliasing artifact

in spiral reconstruction. Noted that the same deep learning model

used in the previous Cartesian k-space reconstruction was applied

to spiral reconstruction, without the need of re-training the deep

learning model.
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Figure 3.13 The preliminary result from the proposed accelerated reconstruc-

tion in quantitative susceptibility mapping (QSM), with R = 4

and GRAPPA type of 1D undersampling. The raw images were

acquired by T2∗ weighted gradient echo sequence. Noted that the

same deep learning model used in the previous experiments was

applied to this experiment, with phase information preserved in

all reconstructed images. The proposed deep learning method also

showed an apparent de-noising effect on QSM maps, while still

preserved the major phase contrast even with high acceleration,

i.e., R = 4. Two rows show maps on different slices from one

healthy volunteer.

3.5 Discussion

The proposed method can reliably and consistently recover the nearly aliased-free

images with relatively high accelerations. Meanwhile, as expected, the increase of

image smoothing with high acceleration was noticed, reflecting the loss of intrinsic

resolution. The estimated image from the maximum of the posterior can not guar-

antee the full recovery of the image details, i.e., PSNR > 40 dB for a full recovery.
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However, at modest acceleration, the reconstruction from a maximum of posterior

showed the successful reconstruction of the detailed anatomical structures, such as

vessels, cartilage, and membranes in-between muscle bundles.

In this study, the results demonstrated the reconstruction of high-resolution

image (i.e., 256 × 256 matrix) with low-resolution prior (i.e., trained with 128

× 128 matrix), confirming the feasibility of reconstructing different size images

without the need for retraining the prior model. Even the prior model was trained

by 128x128 images; it was still valid and applicable for the reconstruction of a high-

resolution image. The proposed methods provided more than 8 dB improvement

over the conventional GRAPPA reconstruction at the 4-fold acceleration in knee

MRI. Besides, in contrast with other deep learning-based methods, those focused

on the ℓ2 loss, the likelihood that was conditioned by pixel-wise dependencies of

the whole image showed an improved representation capacity, leading to a higher

reconstruction accuracy. The applicability of the proposed method in the patch-based

reconstruction also suggested its high representation capacity and flexibility. Even

when the inputs were image patches, the prior model could still recover the whole

image.
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Figure 3.14 Convergence curves reflected stabilities of iterative steps: 1)

maximizing the posterior, which effectively minimized the log-

likelihood of MRI prior model and 2) k-space fidelity enforcement,

which reduced the residual norm on k-space fidelity. The 22%

sampling rate and 1D undersampling scheme were used in this

simulation. The residual norm was written as ‖y−Ax‖2
2 in Eq.

3.13, and the reciprocal of log-likelihood for MRI prior model

was given in Eq. 3.9.
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The projected subgradient approach to solving Eq. (3.12) was computationally

inexpensive but converged slowly, as shown in Figure 3.14. For a random initial-

ization, the algorithm needed about 500 iterations to converge with a fixed step

size. Meanwhile, we noticed that if the zero-filled-reconstructed image was used for

initialization, the number of iterations required could be reduced to 100. Besides,

the decay of residual norm stopped earlier than that of the log-likelihood, i.e., when

the residual norm stopped decaying, the likelihood can still penalize the error. This

evidence indicated that the residual norm as the ℓ2 fidelity alone was sub-optimal,

and the deep learning-based statistical regularization can lead to a better reconstruc-

tion result compared with the ℓ2 fidelity. The use of deep learning-based statistical

regularization was key improvement led the proposed method outperformed other

conventional methods trained by image-level ℓ2 loss. ℓ2 loss did not give an explicit

description of the relationship amid all pixel in the image, while the likelihood

used in conjunction with the proposed image prior model was conditioned by the

pixel-wise relationship and demonstrated superior performance compared with the

conventional methods, under the current experimental setting.

Furthermore, the demonstrated image prior can be extended to a more elaborate

form with clinical information, such as organs and contrast types, as the model inputs.

For example, one could input the image prior with labels such as brain or knee. Then

hypothetically, the image prior can be designed as a conditional probability for the

given image label. In other words, the posterior would be dependent on both the k-

space data and image labels. Moreover, the MR images acquired with pulse sequence

parameters could serve as image labels for the prior, such as echo time and repetition

time. In short, the prior model can be used to describe clinical information or

acquisition parameters. This setting opens up a future direction on a more elaborated

image prior to clinical information and MR sequence parameters for more intelligent

image representation and pattern detection.

In this study, the generative network solely served as an image prior model, in

contrast with how neural network was used in other deep learning-based reconstruc-

tions [33, 28, 17, 1]. Specifically, in previous studies [33, 28, 17, 1], embedding

k-space fidelity term into the network made the algorithm inflexible because image

prior and undersampling artifacts were mixed during the training. The proposed

method used the standard analytical term for fidelity enforcement; therefore, its

flexibility was comparable to the traditional optimization algorithm, such as ℓ1 reg-

ularization. Due to unavoidable changes of the encoding scheme, e.g., the image

size and the RF coils, during MRI experiment in practice, it was essentially needed

to separate the learned component (the image prior) from the encoding matrix used
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in the fidelity term in reconstruction. Besides, the proposed method showed the

feasibility of incorporating the coil sensitivity information in the fidelity term, which

enabled the changeable RF coils without the need of retraining the model [20, 4]. In

summary, the separation of the image prior and the encoding matrix embedded in the

fidelity term made the proposed method more flexibility and generalizable compared

with conventional deep learning approaches.

3.6 Conclusion

In summary, this study presented the application of Bayesian inference in MR

imaging reconstruction with the deep learning-based prior model. We demonstrated

that the deep MRI prior model was a computationally tractable and effective tool

for MR image reconstruction. The Bayesian inference significantly improved the

reconstruction performance over that of conventional ℓ1 sparsity prior in compressed

sensing. More importantly, the proposed reconstruction framework was generalizable

for most reconstruction scenarios.
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Chapter 4

Summary

The acceleration of MR imaging has been the central topic of MR research since

it was introduced into clinical practice. However, after years of the development of

sophisticated hardware system, there is less potential to shorten the scanning time

through the improvement of hardware due to the restriction of physiology. Many

studies sought to obtain the clinically acceptable image from undersampled k-space

for the sake of faster acquisition, utilizing the information provided by some prior

knowledge such as sensitivities maps and the sparsity in a particular transformed

domain. With these ideas, parallel imaging and compressed sensing MR emerged and

indeed accelerated the imaging process without a considerable loss of image quality

under the moderate acceleration factor. After that, the reconstruction started to be

achieved by some model-based methods in order to employ the prior knowledge,

and the definition of the encoding matrix began to appear in some reference. From

this perspective, the compressed sensing MRI is a method of taking advantage of

sparsity, which is evaluated by ℓ1-norm. The development of deep learning provides

an effective tool to exploit the existing image database when reconstructing the image

from undersampled k-space data. In the beginning, the convolutional layers were

trained to replace the sparsifying transform, such as wavelet transform, to achieve a

much sparser representation in the trained transform domain. However, these sort of

methods was still under the bound of compressed sensing without uncovering the

intrinsic distribution of the existing database, even though it showed improvement

over the conventional sparse kernels. What’s more, those methods were difficult to

be generalized for various reconstruction settings, when it comes to the different

number of coils, image size and sampling trajectory and so on.

Therefore, extracting a generalizable prior model from the existing image database

is the key to applying deep learning to MR image reconstruction. And in this thesis,

two types of prior implemented with generative networks were elaborately presented.

In Chapter 2, the discriminator of GAN was used to confine a manifold for the oper-

ation of ℓ2 projection, and the generator was used to replace the proximal operation

which is to enforce sparsifying transform. The other steps of ADMM for MR image

reconstruction remained the same except the modification of proximal. In Chapter 3,

the prior model of existing image database was defined with an autoregressive net-
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work, Pixel-CNN++. And the reconstruction was described by Bayesian theorem and

achieved by maximizing the posterior distribution. The reconstruction via Bayesian

inference has shifted from the constraint of sparsity to the constraint of likelihood.

The sparsity is scalable in Euclidean space and the distance is measured pixel-by-

pixel without considering the relationship between them, while the likelihood has

statistical assumption of the whole image. The prior model trained by existing image

database was evaluated by likelihood which makes it more appropriate to serve as

generic prior knowledge for various reconstruction settings.

In the future work, the investigation is supposed to be pushed into a deeper level

that the prior model is trained to describe the distribution of T1, T2, and proton

density. By doing that, the prior model is enforced to be closer and more accurate to

the formation of MR images, because the MR image is a specific representation of

those three parameters under a certain imaging experiment. With this prior model,

the potential to obtain different weighted images from only one imaging experiment

is guaranteed.
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Appendix I

Pseudo-code

I.1 Reconstruction for the fixed image size with deep prior model

Algorithm 1 Reconstruction algorithm with deep prior model

Input:

y - k-space data

A - encoding matrix

λ - maximum iteration

Output:

x - the restored image

1: Give a random initial point x(0) ⊲ Initialization

2: while ‖g(k)‖2
2 > ε and k < λ do ⊲ Iteration

3: Generate a random shifting offset d

4: Shift x(k) d pixels away from the center circularly

5: Split x(k) into pieces s(k) for feeding to network

6: Get subgradient ∇x log(g(x)) at x(k)

7: Pick a step size αk = 1/k

8: Update s(k+1) = s(k)−αk∇s(k) logg(s(k))

9: Merge pieces s(k+1) into z(k+1) for projection

10: Shift z(k+1) −d pixels away from the center circularly

11: Projection x(k+1) = argmax
x∈X

1
2
‖x− z(k+1)‖2

2

12: return x(k+1)
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