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Synopsis

The application of generativemodels inMRI reconstruction is shifting researchers’

attention from the unrolled reconstruction networks to the probabilistically

tractable iterations and permits an unsupervised fashion for medical image re-

construction.

Introduction

The image reconstruction problem is formulated in a Bayesian view and samples

are drawn from the posterior distribution given the k-space using the Markov

chain Monte Carlo (MCMC) method. The minimum mean square error (MMSE)

and maximum a posterior (MAP) estimates are computed. The chains are the re-

verse of a diffusion process (c.f., Figure 1). Score-based generative models are

used to construct chains and are learned from an image database.

Figure 1. Overview of the proposed method. The unknown data distribution q(x0) of the
training images goes through repeated Gaussian diffusion and finally reaches a known

Gaussian distribution q(xN), and this process is reversed by learned transition kernels

pθ(xi−1|xi). To compute the posterior of the image, a newMarkov chain is constructed by

incorporating the measurement model into the reverse process (red chain).

Theory

Using Bayes’ formula one obtains for each i the desired distribution p (xi | y) from

p (xi | y) ∝ p (xi) p (y | xi) with p(y|xi) = CN (y; Axi, σ2
ηI), (1)

where A is the parallel MRI forward model, xi is the ith image and y is given k-
space data (cf Figure 1). Startingwith the initial density q(xN) ∼ CN (0, I) at i = N ,

one obtains p(xi) with transition kernels {p(xj|xj+1)}i≤j<N

p(xi) ∝ p(xi|xi+1) · ... · p(xN−1|xN) · q(xN). (2)

By estimating the transition kernel with the neural network, one obtains the ker-

nel {pθ(xi | xi+1)}i and therefore one can sample pθ(xi|y) with the unadjusted

Langevin Monte Carlo method in order to get an estimate of xi, i.e.

xk+1
i ← xk

i + γ

2
∇xi

log pθ(xk
i | y) +√γz, z ∼ CN (0, I), (3)

with stepsize γ > 0, k = 1, ..., K and x1
i := xK

i+1 with x1
N ∼ CN (0, I).

Uncertainty
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Figure 2. The single-coil k-space is undersampled by skipping every second line. All images

in which the superposition of points Pl and Pl+2/n equals to the points Pr in ground truth

are solutions to y = Ax + ε. Aliased images, xMMSE, variance maps and ground truth are

shown. (a) The object is centered. (b) The object is shifted. (c) Selected solutions are

presented. The learned reverse process knows less about images that were shifted.
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MMSE vs MAP
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Figure 3. 200 extended iterations after randomexploration (i.e, without noise disturbance)

and a deterministic estimate of MAP are indicated by solid and dashed lines respectively.

(a) PSNR and SSIM over iterations. (b) Variance1 and variance2were computed from unex-

tended samples and extended samples respectively. Extended samples converge to xMAP.
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Figure 4. Reconstructions are `1-ESPIRiT, XPDNet, xMMSE highlighted with confidence in-

terval (CI), xMMSE and a fully-sampled coil-combined image (CoilComb). Hallucinations

appear when using 8-fold acceleration and are highlighted with the CI after thresholding.

Selected regions of interests are presented in a zoomed view.
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Figure 5. Reconstruction of T2 and T1 FLAIR images (red box) with a network trained on

T2 FLAIR images using a Poisson-disk pattern of 8x undersampling in k-space.

Conclusion

This method combines concepts from machine learning, Bayesian inference and

image reconstruction. In this setting, the image reconstruction is realized bydraw-

ing samples from the posterior term p(x|y) using data driven Markov chains, pro-

viding a minimum mean square reconstruction and uncertainty estimation and

showing good performance and transferability to different contrasts and sampling

patterns.
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