
All you need are DICOM images∗

Guanxiong Luo1, Mortiz Blumenthal1, Xiaoqing Wang1,2, and Martin

Uecker1,2,3,4

1Institute for Diagnostic and Interventional Radiology, University Medical Center
Göttingen, Germany

2Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
3German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
4Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of

Excitable Cells” (MBExC), University of Göttingen, Germany

1 Synopsis

Most deep-learning-based reconstructions methods need predefined sampling pat-
terns and precomputed coil sensitivities for supervised training, limiting their later
use in applications under different conditions. Furthermore, only the magnitude
images are always stored in DICOM format in the Picture Archiving and Com-
munication System (PACS) of a typical radiology department. That means that
raw k-space data is usually not available. This work focuses on how to extract prior
knowledge from magnitude images (DICOM) and how to apply the extracted prior to
reconstruct images from k-space multi-channel data sampled with different schemes.

2 Introduction

Recently, the reconstruction methods proposed for parallel imaging with the appli-
cation of deep learning have outperformed conventional methods, benefitting for the
learnt information from the existing database. However, most of them need prede-
fined sampling patterns and precomputed coil sensitivities for supervised training,
limiting their flexibilities in applications. Besides, only the magnitude images are
always stored with Picture Archiving and Communication System (PACS) in DI-
COM format. That means the collection of raw k-space data would be inconvenient
in practice even regardless of the file size of them. This work focus how to extract
prior knowledge from magnitude images (DICOM) and how to apply the extracted
prior to reconstruct images from prospectively sampled k-space multi-channel data.
The learned prior is independent of sampling patterns. The two main contributions
of this work are: 1) the prior knowledge extracted from absolute images can be ap-
plied to image reconstruction; and 2) as an extension of nonlinear reconstruction,
the learnt prior can be used as a regularization term on image content.
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Figure 1: Overview of the proposed method. The model-based reconstruction is able
to utilize the information from an image dataset using a learned generative prior as
a regularization term.
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3 Theory

Parallel MR imaging can be formulated as a nonlinear inverse problem as follow

F (ρ, c) := (FS(ρ · c1), · · · ,FS(ρ · cN )) = y,

where F is sampling operator and the corresponding k-space data is y = (y1, · · · , yN )T ,
and the spin density ρ and the coil sensitivities c = (c1, · · · , cN )T . Proposed in the
nonlinear inverse reconstruction (nlinv)[1], this problem can be solved with the Iter-
ative Gauss Newton Method (IRGNM) by estimating δm := (δρ, δc) in each step k
for given mk := (ρk, ck) with the following minimization problem

min
δx

1

2
‖F ′(mk)δx+ F (mk)− y‖22 +

αk
2
W(c + δc) + βkR(ρk + δρ), (1)

where W(c) = ‖Wc‖2 = ‖w · Fc‖ is a penalty on the high Fourier coefficients of the
coil sensitivities and R is a regularization term on ρ. The αk and βk decay based
on reduction factor over iteration steps. In this work, the neural network based log-
likelihood prior is used as learned regularization term, which was investigated in Ref.
[2] and formulated with following joint distribution

logP (Θ̂,x) = p(x;NET (Θ̂,x)) = p(x(1))

n2∏
i=2

p(x(i) | x(1), .., x(i−1)), (2)

where the neural network NET(Θ̂,x) outputs the distribution parameters of the mix-
ture of logistic distribution which was used to model the image. For each steps, the
fast iterative gradient descent method (FISTA) [3] is used to minimize Eq. (1). The
proximal operation on logP (Θ̂,x) was approximated using gradient updates. The
gradient of logP (Θ̂,x) is computed via back-propagation.

4 Methods

Phase augmentation: The loss of phase information in DICOM images leads to the
trained prior having no knowledge about the relationship between real and imaginary
channels. To deal with this problem, we tried three approaches to obtain phase maps
for magnitude images.

1. The random phase simulation is that the 2×2 matrix of random complex num-
bers is transformed into a complex image of a specified size using the inverse
Fast Fourier transform, then the phase of it is augmented to a DICOM image.

2. A U-Net is trained to predict complex images given DICOM images. The
complex images in Ref. [2] are used as labels.

3. The predicted phase in the background is almost constant, which distorts the
distribution of pixels, as shown in Figure where a certain number of pixels align
on a line instead of being distributed roughly even in a circle. To compensate
for this, we add invisible Gaussian noise to the prediction and then obtain the
phase out of it.

Therefore, we have four groups of images, including the true complex images recon-
structed for k-space data. In Fig. 2, the selected magnitude images, phase maps,
and scatter plots over real and imaginary channels from each group are presented.
We trained three PixelCNN++ models with Type2, Type3 and Reference data and
referred to them as P2, P3, and Pr respectively.

4.1 Evaluate priors in different reconstruction settings

To compare the three trained priors, we reconstructed images from the k-space data
acquired with different schemes, using them as regularization terms. For the opti-
mization in Eq. (1), the algorithm was implemented within the BART toolbox [4]
with the nonlinear operator framework.
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Figure 2: There are three groups of magnitude images that are augmented with: ran-
domly simulated phase, predicted phase, and predicted phase with invisible Gaussian
noise, beside a group of reference images. The number of pixels (indicated with red
dots) whose normalized signal intensity are below 0.01 is 31046. (a) Magnitude im-
ages. (b) Phase maps. (c) Scatter plots over real and imaginary channel. (d) Scatter
plots with focus on origin.

5 Results

Phase augmentation: As shown in Fig. 2, the simulated phase is smooth in the
field of view and independent of the image content. Because of this independence, the
scatter plot of the correspondingly augmented complex image over real and imaginary
channels is distorted. The U-Net provides the content-depended phase but the clean
phase aligns most background pixels along a line. The perturbed predicted phase
give the most realistic complex image.
Retrospective experiment Since Eq. (2) models the relationship between real
and imaginary channels as investigated in Ref. [2] and P2 is learned from a distorted
distribution shown in Fig. 2, it is expected to see that P2 performs worse than P3 and
Pr, especially in the case of the large number of missing phase encoding lines with
many folding artifacts remaining in Fig. 3 (a). As can be seen in Fig. 3, P3 performs
almost as well as Pr.
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Figure 3: Comparison of different priors (P2, P3 and Pr). (a) Randomly pick up
20% of phase encoding lines. (b) Randomly pick up 12% data points in k-space with
Poisson disc.

6 Conclusion

We demonstrated how a learned log-likelihood prior trained from DICOM images can
be incorporated into calibration-less parallel imaging reconstruction using nonlinear
inversion. There are two advantages of the proposed method: 1) having more access
to training data; and 2) being able to apply the same prior for image reconstruction
from the k-space aquired with different sampling patterns or with different receive
coils.
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