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Purpose: We introduce a framework that enables efficient sampling from
learned probability distributions for MRI reconstruction.
Method: Samples are drawn from the posterior distribution given the measured
k-space using the Markov chain Monte Carlo (MCMC) method, different from
conventional deep learning-based MRI reconstruction techniques. In addition
to the maximum a posteriori estimate for the image, which can be obtained by
maximizing the log-likelihood indirectly or directly, the minimum mean square
error estimate and uncertainty maps can also be computed from those drawn
samples. The data-driven Markov chains are constructed with the score-based
generative model learned from a given image database and are independent of
the forward operator that is used to model the k-space measurement.
Results: We numerically investigate the framework from these perspectives:
(1) the interpretation of the uncertainty of the image reconstructed from under-
sampled k-space; (2) the effect of the number of noise scales used to train the
generative models; (3) using a burn-in phase in MCMC sampling to reduce
computation; (4) the comparison to conventional 𝓁1-wavelet regularized recon-
struction; (5) the transferability of learned information; and (6) the comparison
to fastMRI challenge.
Conclusion: A framework is described that connects the diffusion process and
advanced generative models with Markov chains. We demonstrate its flexibility
in terms of contrasts and sampling patterns using advanced generative priors
and the benefits of also quantifying the uncertainty for every pixel.
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1 INTRODUCTION

Modern MRI formulates reconstruction from raw data in
Fourier space (k-space) as an inverse problem. Undersam-
pling to reduce acquisition time then leads to an ill-posed
reconstruction problem. To solve this problem, parallel
imaging can exploit spatial information from multiple
receive coils in an extended forward model.1 Compressed
sensing uses the sparsity of images in a transform domain
(i.e., wavelet domain, finite differences) as prior knowl-
edge. Combined with incoherent sampling this allows
recovery of sparse images from highly undersampled
data.2,3 Learning-based techniques for compressed sens-
ing include methods using dictionary learning4 or a
patch-based nonlocal operator.5

In recent years, the application of deep learning pushed
these ideas forward by integrating learned prior knowl-
edge.6 Most of these methods can be classified into two
categories: First, methods that unroll the existing itera-
tive reconstruction algorithms into a neural network and
train their parameters by maximizing the similarity to a
ground truth. In Reference 7, the authors replaced the
handcrafted regularization term with convolution layers,
and derived a neural network from the iterative proce-
dure of the Alternating Direction Method of Multipliers
algorithm. References 8,9 investigated similar approaches.
The downside of this kind of method is the need for super-
vised training, which requires raw k-space data with fixed
known sampling patterns and corresponding ground truth
images. The second category consists of methods that learn
a prior from high-quality images, then plug it into existing
iterative algorithms as a regularization term. In References
10-12, the image prior was constructed with a variational
auto-encoder,13 a denoising auto-encoder14 and an autore-
gressive generative model,15 respectively. These methods
then compute a maximum a posterior (MAP) as the esti-
mator of the image. These types of methods separate the
learned information from the encoding matrix (sampling
pattern in k-space and coil sensitivities), which permits
more flexibility in practice because they allow the acquisi-
tion patterns and receive coils to change without retrain-
ing. Generative adversarial networks were also used for
image reconstruction in Reference 16. There, the discrim-
inator is used to confine the space of the output of a gen-
erator that is designed to generate images with conformity
to k-space data.

Although deep learning-based approaches provide
promising results, worries about the uncertainty caused
by undersampling strategies and algorithms have lim-
ited their usage in clinical practice until now. Therefore,
the uncertainty assessment constitutes an important step
for deep learning-based approaches. The uncertainty is

twofold: (1) the uncertainty of weights inside the neural
network;17,18 and (2) the uncertainty introduced by the
missing k-space data points. The uncertainty from miss-
ing k-space data points can be addressed in a Bayesian
imaging framework. We refer the readers to References
19,20. In Reference 11, the MAP estimator is used, but it
provides only the mode of the posterior density p(x|y) and
practical optimization may also even only provide a local
maximum. In the setting of Bayesian inference, it is pos-
sible to investigate the full shape of posterior distribution
p(x|y). In particular, it is possible to draw sample from the
posterior distribution for priors based on diffusion models
using the Markov chain Monte Carlo (MCMC) method
as described previously by Jalal et al.21 and others,22-24

which are closely related to the present work. Jalel et al.
use Langevin sampling to sample the posterior using
score-based generative model and this is extendend in
Reference 24 to also include a motion model. The method
in Reference 23 uses the predictor-and-corrector frame-
work proposed in Reference 25. These publications point
out the relationship to Bayesian reconstruction and show
some results related to uncertainty estimation, but a com-
plete Bayesian formulation of this framework applied
to MRI multichannel reconstruction is not provided.
A general problem with this approach is the large num-
ber of iterations required during sampling, for example,
Reference 23 reports the use of several thousands of
iterations.

Following these ideas, a generic framework for MRI
reconstruction emerges, which is based on a series
of publications related to generative models,25-29 in
which the essential idea is to: (1) systematically and
slowly destroy the underlying prior knowledge in a
data distribution through an iterative forward diffu-
sion process; (2) learn a reverse diffusion process that
restores the patterns by a so-called score-based neu-
ral network; and (3) incorporate the forward model of
the measurement into the learned reverse process. The
general picture of the proposed method is illustrated in
Figure 1.

In the present work, we recapitulate the framework of
Bayesian reconstruction and score-based diffusion models
and numerically investigate this framework from the fol-
lowing different perspectives: (1) the interpretation of the
uncertainty of the image reconstructed from undersam-
pled k-space; (2) the effect of the number of noise scales
used the generative models on image quality on computa-
tion time; (3) using a burn-in phase in MCMC sampling to
reduce computation; (4) the comparison to conventional
𝓁1-wavelet regularized reconstruction; (5) the transferabil-
ity of learned information; and (6) the comparison to
fastMRI challenge.30,31
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(A)

(B)

F I G U R E 1 Overview of the proposed method. (A) The unknown data distribution q(x0) of the training images goes through repeated
Gaussian diffusion and finally reaches a known Gaussian distribution q(xN ), and this process is reversed by learned transition kernels
p𝛉 (xi−1|xi). To compute the posterior of the image p(x|y), a new Markov chain p̃𝛉 (xi−1|xi) is constructed by incorporating the measurement
model into the reverse process (red chain). (B) Training samples (red dots) from a mixture of bivariate Gaussian distribution are shown. The
upper and bottom rows illustrate how samples (green dots) gradually gather around training samples in the reverse process, without and with
the observation, respectively. In this example, the likelihood for the observation was a bivariate Gaussian mixture, so that cluster 2 has a
lower and cluster 3 has a higher probability.

2 THEORY

2.1 MRI reconstruction as Bayesian
inference

We consider image reconstruction as a Bayesian problem
where the posterior of image p(x|y) given with the mea-
sured data y and a prior p(x) learned from a database of
images.11,19,20 Here, the image is denoted as x ∈ Cn×n,
where n × n is the size of image, and y ∈ Cm×mC is the
vector of m complex-valued k-space samples from mC
receive coils. Assuming the noise 𝜂 circularly symmet-
ric normal with zero mean and covariance matrix 𝜎

2
𝜂

I,
the likelihood p(y|x) for observing the y determined by
y = x + 𝜂 and given the image x is given by a complex
normal distributions

p(y|x) = 
(
y;x, 𝜎2

𝜂

I
)

=
(
𝜎

2
𝜂

𝜋

)−Np e-||𝜎−1
𝜂

⋅(y−x)||22
, (1)

where I is the identity matrix, 𝜎
𝜂

the SD of the noise,
x is the mean and Np is the length of the k-space data
vector.  ∶ Cn×n → Cm×mC is the forward operator and
given by =  , where  are the coil sensitivity maps,
 the two-dimensional Fourier transform, and  the
k-space sampling operator. According to Bayes’ theorem
the posterior density function p(x|y) is then

p(x|y) =
p(y|x) ⋅ p(x)

p(y)
. (2)

In this work, the reconstruction is based on the sam-
pling of this posterior distribution. We utilize an efficient
technique based on the MCMC method with the appli-
cation of a diffusion probabilistic generative model. This
consists of two processes: (1) a forward diffusion process
which converts a complicated distribution used as prior
for the image into a simple Gaussian distribution; and (2)
a learned finite-time reversal of this diffusion process with
which a Gaussian distribution is gradually transformed
back to the posterior (cf. Figure 1).
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2.2 The forward diffusion process

In probabilistic diffusion models, the data distribution
characterized by density q(x0) is gradually converted into
an analytically tractable distribution (Gaussian noise).28

The image x0 is perturbed with a sequence of noise scales
0 = 𝜎0 < 𝜎1 < · · · < 𝜎N . When the number of steps used
for discretization N → ∞, the diffusion process becomes a
continuous process. Here, we consider the discrete Markov
chain

xi = xi−1 + zi−1, i = 1, · · · ,N, (3)

where zi−1 ∼  (0, (𝜎2
i − 𝜎

2
i−1)I), that is, the ith transition

kernel is then given by

q(xi|xi−1) = 
(
xi; xi−1,

(
𝜎

2
i − 𝜎

2
i−1
)

I
)
. (4)

Instead of doing transitions step by step25,32 a single per-
turbation kernel

q(xi|x0) = 
(
xi; x0, 𝜎

2
i I
)
, (5)

can be computed as a convolution of Gaussians. With
Bayes’ theorem we can write:

q (xi−1|xi, x0) = q (xi|xi−1)
q (xi−1|x0)
q (xi|x0)

. (6)

Given the initial image x0, the posterior of a single step of
the forward process is then given by (see Appendix A)

q(xi−1|xi, x0) = 

(

xi−1;
𝜎

2
i−1

𝜎

2
i

xi +

(

1 −
𝜎

2
i−1

𝜎

2
i

)

x0, 𝜏
2
i I

)

,

(7)
with variance 𝜏2

i ∶=
(
𝜎

2
i − 𝜎

2
i−1

) (
𝜎

2
i−1∕𝜎

2
i

)
.

2.3 Learning the reverse process

The joint distribution of the reversal diffusion process is
characterized by the probability density

p(xN , xN−1, … , x0) = p(xN)
N∏

i=1
p(xi−1|xi), (8)

where p(xN) is the initial Gaussian distribution. The
reverse is given by Kolmogorov’s backward equation
which has the same form as the forward process.28,32 Thus,
the transitions p(xi−1|xi) of the reverse process can be
parameterized with the Gaussian transition kernel

p (xi−1|xi) = 
(
xi−1;𝝁 (xi, i) , 𝜏2

i I
)
, (9)

where 𝝁 (xi, i) and 𝜏

2
i I are the mean and variance of

the reverse transitions, respectively. Here, we learn the
mean 𝜇𝛉 of the reverse transitions using a neural net-
work parameterized by training parameters 𝜃. Since the
learned reverse transitions p

𝜃

(xi−1|xi) lead to a new den-
sity p𝛉(x0), which should match q(x0), they can be learned
by minimizing the cross entropy

H(p𝛉, q) = −Eq(x0)
[
log p𝛉(x0)

]
. (10)

Following Reference 28 a lower bound 𝓁 can be written
in terms of Kullback-Leibler (KL) divergence between the
transition kernel Equation (9) and the posterior of forward
process Equation (7)

𝓁 =
N∑

i=2
Eq(x0)Eq(xi|x0)

[
DKL(q(xi−1|xi, x0)|| p𝜽(xi−1|xi))

]

=
N∑

i=2
Eq(x0)Eq(xi|x0)

×
⎡
⎢
⎢
⎣

1
𝜏

2
i

‖
‖
‖
‖
‖
‖

𝜎

2
i−1

𝜎

2
i

xi +

(

1 −
𝜎

2
i−1

𝜎

2
i

)

x0 − 𝝁𝜽(xi, i)
‖
‖
‖
‖
‖
‖

2

2

⎤
⎥
⎥
⎦

+ C,

(11)

where C is a constant. The derivation of KL diver-
gence between two Gaussian distributions is detailed in
Appendix B. Using Equation (5) we can express xi = x0 + z
with z ∼ 

(
0, 𝜎2

i I
)
, and obtain

𝓁 =
N∑

i=2
Ex0,z

[

1
𝜏

2
i

‖
‖
‖
‖
‖

𝜎

2
i−1

𝜎

2
i

z + x0 − 𝝁𝜽 (xi, i)
‖
‖
‖
‖
‖

2

2

]

+ C. (12)

Thus, we can learn the mean of the reverse transitions by
learning to denoise the training data disturbed by noise.
In References 26,27, the generative model is estimated by
minimizing the expected squared distance between the
gradient of the log-probability given by the score network
and the gradient of the log-probability of the observed data.
This technique was extended and generalized in Refer-
ences 25,29. In the following, we quickly point out the
connection to score matching networks. Let:

𝝁
𝜽 (xi, i) − x0 = 𝜎2

i−1s𝜽 (xi, i) , (13)

where s𝜽(xi, i) denotes the denoising score matching net-
work that is conditional on the index of noise scales i.
Then, we have

𝓁 =
N∑

i=2
Ex0,z

[
𝜎

2
i−1

𝜏

2
i

‖
‖
‖
‖
‖

z
𝜎

2
i

− s𝜽 (xi, i)
‖
‖
‖
‖
‖

2

2

]

+ C. (14)
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Expressing the noise again as z = xi − x0, we can rewrite

Ex0,z

[
‖
‖
‖
‖
‖

xi − x0

𝜎

2
i

− s𝜽(xi, i)
‖
‖
‖
‖
‖

2

2

]

= Eq(x0)Eq(xi|x0)

[
‖
‖∇xi log q(xi|x0) − s𝜽(xi, i)‖‖

2
2

]

, (15)

which shows that Equation (14) is equivalent to score
matching. For the later use of the transition kernel,
Equation (13) is equivalent to

𝝁
𝜽 (xi, i) − xi =

(
𝜎

2
i − 𝜎

2
i−1
)

s𝜽 (xi, i) . (16)

In summary, the score network is trained via Equation (15)
to output the gradient fields that are used to construct
the Markov transitions (Equation 9) which nudges coarse
samples xi toward finer ones xi−1, namely the reverse pro-
cess. In later sections, we will discuss how we construct
and train the score networks.

2.4 Computing the posterior for MRI
reconstruction

In order to compute the posterior probability p(x|y) for the
image x given the data y, we need to modify the learned
reverse process. We achieve this by multiplying each of
the intermediate distributions p(xi) with the likelihood
term p(y|xi) according to Bayes’ theorem. We use p̃ (xi) =
p(xi|y) to denote the resulting sequence of intermediate
distributions

p̃ (xi) ∝ p (xi) p(y|xi), (17)

up to the unknown normalization constant. Following
Reference 28, the transition from xi+1 to xi of the modified
reverse process is

p̃ (xi|xi+1) ∝ p (xi|xi+1) p(y|xi). (18)

The sampling at each intermediate distribution of Markov
transitions Equation (18) is performed with the unadjusted
Langevin algorithm33

xk+1
i ← xk

i +
𝛾

2
∇xi log p̃(xk

i |xi+1) +
√
𝛾z, (19)

where z is standard complex Gaussian noise  (0, I). We
now go over to the modified learned process p̃

𝜽
(xi|xi+1)

parameterized by 𝜃 and obtain the log-derivative with
respect to xi using the learned reverse transitions
p𝜽 (xi|xi+1) as

∇xi log p̃
𝜽
(xi|xi+1) = ∇xi log p𝜽 (xi|xi+1) + ∇xi log p(y|xi).

(20)

From Equation (9) and Equation (16), we have

∇xi log p𝜽 (xi|xi+1) =
1
𝜏

2
i+1

(
𝜎

2
i+1 − 𝜎

2
i
)

s𝜽 (xi+1, i) , (21)

and from Equation (1) we have

∇xi log p(y|xi) = −
1
𝜎

2
𝜂

(


H
xi −Hy

)
. (22)

After inserting these expressions into Equation (19) we
obtain

xk+1
i ← xk

i +
𝛾

2𝜏2
i+1

(
𝜎

2
i+1 − 𝜎

2
i
)

s𝜽
(
xk

i , i
)

− 𝛾

2𝜎2
𝜂

(


H
xk

i −
Hy
)
+
√
𝛾z. (23)

The starting point for each chain x0
i = xK

i+1 is the last
sample from the previous distribution p̃(xi+1|xi+2) after
K Langevin steps. We found it advantageous to modify
the likelihood term in each step according 𝜎

2
𝜂

= 𝜏i+1∕𝜆,
which should approach the variance of the data noise
in the last step. Since the noise variance was unknown
for the data set we used, we empirically selected a 𝜆

that determines how strong the k-space data consistency
is relative to the prior. We set 𝛾 to 2𝜏2

i+1. At last, the
algorithm used to sampling the posterior is presented in
Algorithm 1.

Algorithm 1. SAMPLING THE POSTERIOR WITH A
MCMC METHOD

1: Give the acquired k-space y.
2: Construct the forward operator  with sampling pat-

tern  and coil sensitivities  .
3: Set the Langevin steps K, the factor 𝜆, the start noise

level index N, and 𝛾 .
4: Generate x0

N from a suitable Gaussian distribution
(e.g.,  ∼ (0, I)).

5: for i in {N − 1, · · · , 1} do
6: Draw samples from p̃(xi|xi+1) by running K Langevin

steps with Equation (23).
7: end for

To characterize the shape of a posterior, we run mul-
tiple chains to draw samples in parallel. To reduce the
amount of computation, the burn-in phase is introduced
as shown in Figure 2. That means only one chain proceeds
through the several beginning noise levels, and after that
we split it up into multiple Markov chains using the sam-
ple from the burn-in phase as initial point indicated by the
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(A) (B)

Uncertainty LocalBurn-in
Sampling

F I G U R E 2 Illustration for the sampling of the posterior p(x|y). (A) The four possible sampling trajectories are indicated the solid lines,
sharing the same burn-in phase (dashed line). The MAP approach via gradient descent reaches a locally optimal solution. (B) Possible
reconstructions are showed over the energy curve and the uncertainty map is the pixelwise variance over samples.

blue dot. To further reduce computation, we introduce the
continuously decreasing noise scales, which reduces the
number of iterations when performing Langevin dynamics
at each intermediate distribution.

2.5 The analysis of samples

Given a posterior probability distribution p(x|y) the mini-
mum mean square error (MMSE) estimator minimizes the
mean square error:

xMMSE = arg min
x̃ ∫

||x̃ − x||2p(x|y)dx = E[x|y]. (24)

The MMSE estimator cannot be computed in a closed
form, and numerical approximations are typically
required. Since we demonstrated how to generate samples
from the posterior in previous sections, let us consider the
samples xK

0 at the last stage, and a consistent estimate of
xMMSE can be computed by averaging those samples, i.e.
the empirical mean of samples converges in probability
to xMMSE due to weak law of large numbers. The variance
of those samples is a solution to the error assessment for
the reconstruction if we trust the model parameterized by
Equation (9) that is learned from a image database. The
95% confidence interval is computed for each pixel with
its mean and variance. Since a wider confidence interval
means a larger margin of error, the mean is overlaid with
it to indicate the variability of each pixel, and up to a cer-
tain point, the variability can cause a visual change on the
image (cf. Section 3.3.8).

3 METHODS

3.1 Score networks’ architecture

The denoising score network is designed to predict the
noise given an image degraded by Gaussian noise of a par-
ticular scale 𝜎i. To improve the quality of the predictions
for different noise scales, we consider networks condi-
tional on discrete and pseudo-continuous noise scales. The
discrete one has a much larger gap between 𝜎i and 𝜎i−1
than the pseudo-continuous one and usually has a smaller
number of noise scales N, while the pseudo-continuous
network is adaptive to a certain trained range of noise
scales. The sequence of noise scales {𝜎i}N

i=1 is geometrically
generated following the scheme in Reference 25, that is,

𝜎i = 𝜎
(

i
N

)

= 𝜎min

(
𝜎max
𝜎min

) i−1
N−1
.

For a discrete model, we add modified instance nor-
malization layers that are conditional on the index of the
noise scales following each convolution layer. The condi-
tional instance normalization34 is

̂f k = Φ[i, k]
fk − 𝜇k

sk
+ Ω[i, k], (25)

whereΦ ∈ RN×C and Ω ∈ RN×C are learnable parameters,
k denotes the index of a feature map fk, 𝜇k and sk are the
means and SD over its spatial locations of the kth feature
map computed in each pass through the network, and i
denotes the index of 𝜎 in {𝜎i}N

i=1.
For a continuous model, we let networks be condi-

tional on the index of noise scales by inserting random
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Fourier features.35 Three steps used to encode a noise
index into random features are as follows:

• Draw a random vector which has i.i.d. Gaussian m
entries with the specified standard deviation,

• Scale the random vector with the index i, then multiply
it with 2𝜋,

• Apply sines and cosines to the scaled random vector,
then concatenate them into m × 2 matrix,

where m is embedding size. The encoded index is
added to all the blocks listed in Table S1.

With either one of the two modifications above, a net-
work s

𝜃

(x, i) has two inputs, that is, noise corrupted image
x and noise index i. Real and imaginary parts of the images
are interpreted as separate channels when input into the
neural network. RefineNet36 is the backbone of all the
score networks used in this work (cf. Figure S2). Three
variants from that are trained for different reconstruction
experiments. The architectures of three networks are pre-
sented in detail in Table S1. We refer the readers to the
codes available online for more information about them.
We labeled the three networks withNET1,NET2, andNET3,
respectively, for ease of reference in the following. NET1
is conditional on discrete noise scales, NET2 and NET3
are conditional on continuous noise scales. We introduce
self-attention modules into NET3 to capture long-range
dependencies by adding nonlocal blocks as described pre-
viously37 so that the network has the capability to model
the dataset of high-resolution images.

3.2 Dataset, training, and inference

We trained NET1 and NET2 on a dataset acquired by us
already used and described in Reference 11. NET3 was
trained on a subset of the fastMRI dataset.30 Our dataset
has 1300 images containing T1-weighted, T2-weighted,
T2-weighted fluid-attenuated inversion recovery (FLAIR),
and T2∗-weighted brain images from 13 healthy volunteers
examined with clinical standard-of-care protocols. The
brain images from fastMRI dataset30 were used for bench-
mark that contains T1-weighted (some with post contrast),
T2-weighted and FLAIR images. For the detailed infor-
mation of both dataset, we refer readers to corresponding
publication. Regarding the data partitioning, we first sep-
arated all multislice volumes into training and testing
groups. Then we split the volume into two-dimensional
slices (i.e., images). Reference images—denoted x0 in
the theory—were reconstructed from fully sampled mul-
tichannel k-space. Then, these complex image datasets
after coil combination were normalized to a maximum
magnitude of 1. The coil sensitivity maps were computed

with BART toolbox using ESPIRiT.38,39 1300 images of
size 256 × 256 from the dataset used in Reference 11 were
used to train NET1 and NET2. 1000 images were used for
training, and 300 images were used for testing. All net-
works are trained for 1000 epochs, that is, iterations over
all training images. For the training of NET3, we used the
T2-weighted FLAIR contrast images of size 320 × 320 that
are reconstructed from fastMRI raw k-space data. 2937
images are for training, 326 images are for testing.

Three score networks are implemented with Tensor-
flow.40 The hyperparameters used to train the three score
networks are listed in Table S2. With the trained networks,
we implemented MCMC sampling Algorithm 1 with
Tensorflow and Numpy,41 and then explored the posterior
p(x|y) in different experimental settings. We trained three
score networks once separately for all the experiments
we did in this work. These three models can support all
experiments performed in this study with variable under-
sampling patterns, coil sensitivity maps, channel numbers.
It took around 43 and 67 s, respectively, to train NET1
and NET2 for one epoch on one NVIDIA A100 GPU with
80GB. For NET3, it took around 500 s per epoch on two
NVIDIA A100 GPUs using the multi-GPU support from
Tensorflow. In the spirit of reproducible research, codes
and data to reproduce all experiments are made available*.

3.3 Experiments

3.3.1 Single coil unfolding

To investigate how the Markov chain explores the solu-
tion space of the inverse problem y = x + 𝜂, we designed
the single coil unfolding experiment. The single channel
k-space is simulated out of multichannel k-space data. The
odd lines in k-space are retained. Ten samples were drawn
from the posterior p(x|y). NET1 was used to construct tran-
sition kernels and the parameters in Algorithm 1 are K =
50,N = 10, 𝜆 = 6. We redo the experiment with the object
shifted to bottom. This experiment has an inherent ambi-
guity which cannot be resolved using the data alone and
where the reconstruction is strongly determined by the
prior. Thus, it mimics in a synthetic setting a situation with
high undersampling where hallucinations were observed
in the reconstruction of some deep-learning methods.42

3.3.2 Multicoil reconstruction

Multichannel data points from Cartesian k-space are
randomly picked with variable-density poisson-disc sam-
pling and the central 20 × 20 region is fully acquired.
The acquisition mask covers 11.8% k-space and the
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302 LUO et al.

corresponding zero-filled reconstruction is shown
Figure 4B. We initialized 10 chains and the xMMSE was
computed using different numbers of samples. NET1 was
used to construct transition kernels and the parameters
in Algorithm 1 are K = 30,N = 15, 𝜆 = 13. To visualize
the process of sampling, we use peak-signal-noise-ratio
(PSNR in dB) and similarity index (SSIM) as metrics to
track intermediate samples. The comparisons are made
between the magnitude of xMMSE and the ground truth x̃
after normalized with 𝓁2-norm.

3.3.3 More noise scales

To investigate how the number of noise scales influ-
ences the proposed method, we reconstructed the image
from the undersampled k-space that was used in the
multicoil experiment. NET2 was used to construct tran-
sition kernels and the parameters in Algorithm 1 are
K = 5,N = 70, 𝜆 = 25.

3.3.4 Investigation of the Burn-in Phase

To investigate the burn-in phase illustrated in Figure 2, we
split up into multiple chains at a certain noise scale when
drawing samples from the posterior p(x|y). For instance,
we denote by (xMMSE, 60) the xMMSE that is computed with
10 samples drawn from p(x|y) by splitting up into 10 chains
at the 60th noise scale. By changing the splitting point, we
got different sets of samples that are from chains of dif-
ferent length and computed the final xMMSE, respectively.
We have two sets of xMMSE that are reconstructed from
the undersampled k-space using two sampling patterns
separately. The central 20 × 20 region is obtained and the
k-space, outside the center, is randomly picked up retro-
spectively (10%, 20%). NET2 was used to construct Markov
transition kernels and the parameters in Algorithm 1 are
K = 5,N = 70, 𝜆 = 25.

3.3.5 Investigation into MAP

To verify the samples are located around the local modal-
ity of the posterior, we disabled the disturbance with noise
after stochastic inference with the last distribution p̃(x0|x1)
and ran 200 iterations more to get extended samples. What
is more, we repeated this procedure with determinate
inference, in which the disturbance was disabled during
sampling iterations to get one deterministic sample, that is,
MAP estimation. A Poisson-disc sampling pattern is gen-
erated without variable density and with twofold under-
sampling along phase and frequency encoding directions.

NET2 was used to construct transition kernels and the
parameters in Algorithm 1 are K = 5,N = 70, 𝜆 = 25.

3.3.6 Comparison to 𝓁1-regularized
Reconstruction

A comparison using the fastMRI dataset was used to eval-
uate the performance of the proposed method. We noticed
that the raw k-space data is padded with zeros to make
them have the same dimension. The effect caused by zero
paddings is investigated in Reference 43. Since we only
used the images that were reconstructed from the zero
padded k-space for training, the issue caused by the syn-
thesized k-space does not exist in our work. The under-
sampling pattern for each slice is randomly generated in
all retrospective experiments. NET3 was used to construct
transition kernels. The parameters in Algorithm 1 are K =
3,N = 90, 𝜆 = 20 and 10 samples were drawn to compute
xMMSE. The data range for computing PSNR and SSIM is
determined by the maximum over each slice.

3.3.7 Transferability

To investigate the transferability of learned prior informa-
tion from T2 FLAIR images to other contrasts, we acquired
T1-weighted (pulse repetition time = 2000 ms, inversion
time = 900 ms, echo time = 9 ms) and T2-weighted
(pulse repetition time = 9000 ms, inversion time = 2500
ms, echo time = 81 ms) FLAIR k-space data using
a two-dimensional multislice turbo spin-echo sequence
with a 16-channel head coil at 3T (Siemens, 3T Skyra).
NET3 (trained with T2 FLAIR images) was used to con-
struct transition kernels. The parameters in Algorithm 1
are K = 5,N = 70, 𝜆 = 20.

3.3.8 Comparison to fastMRI challenge

As a comparison to the unrolled neural network, the
XPDNet31 is selected as the reference which ranked 2nd
in the fastMRI challenge. Two networks were trained for
acceleration factors 4 and 8, using retrospectively under-
sampled data from the fastMRI dataset10 using equidis-
tant Cartesian masks and the trained models that are
publicly available†. For the proposed method, NET3 was
used to construct transition kernels. The parameters in
Algorithm 1 are K = 4,N = 90, 𝜆 = 20. The confidence
interval after thresholding is used as the color map to indi-
cate that a region has high uncertainty. Be consistent with
the evaluation the XPDNet provided, 30 FLAIR volumes
are used for validation to compute metrics.
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LUO et al. 303

F I G U R E 3 Single-coil
unfolding with NET1. The
k-space is undersampled by
skipping every second line.
Aliased images, xMMSE,
variance maps and ground
truth are shown. (A) The object
is centered. (B) The object is
shifted. (C) Selected solutions
are presented. The left four are
centered and the right four are
shifted.

(A)

(B)

(C)

4 RESULTS

4.1 Single coil unfolding

As expected, the lack of spatial information from coil sen-
sitivities without parallel imaging leads to huge errors and
folding artifacts still exist in xMMSE as shown in Figure 3.
Since only odd lines are acquired, all images in which
the superposition of points Pl and Pl+2∕n equals to the
points Pr in ground truth are solutions to y = x + 𝜖 with
the same error (the residual norm ||y −x||2). Selected
solutions are presented in Figure 3C. The variance map
indicates the uncertainty of the solutions, which in this
experiment is similar to the hallucinations observed in for
some deep-learning methods for high undersampling.42

The errors of the estimation xMMSE are largely reduced
compared to the zero-filled reconstruction because of
prior knowledge from the learned reverse process (cf.
Figure 3A). The shift of the object increases the symmetry
and then leads to even bigger errors as learned reverse
process know less about images that were shifted (cf.
Figure 3B).

4.2 Multicoil reconstruction

Figure 4 shows the results for the multicoil experiment.
Figure 4A shows the evolution of the samples’ PSNR and
SSIM over the transitions of the data-driven Markov chain.
Intermediate samples are presented in Figure S1. The con-
vergence of samples at each noise level was reached as
indicated by the PSNR and SSIM curves. When there are
more samples, the xMMSE converges to higher PSNR and

SSIM. In Figure 4B, 10 converged samples were used to
compute xMMSE and the variance map. Comparing with the
ground truth, the variance map mainly reflects the edge
information, which can be interpreted by the uncertainty
that is introduced by the undersampling pattern used in
k-space where many high-frequency data points are miss-
ing but the low frequency data points are fully acquired. In
contrast to the single-coil unfolding, the local spatial infor-
mation from coil sensitivities reduces the uncertainties
of missing k-space data. Moreover, error maps qualita-
tively correspond to the variance map, with larger errors in
higher variance regions as shown in Figure 4C. Lastly, the
average over more samples leads to smaller error.

4.3 More noise scales

We also plotted the curve of PSNRs and SSIMs over itera-
tions in Figure 5A for NET2 which uses continuous noise
scales. The PSNR and SSIM of xMMSE, which is computed
with 10 samples, are 37.21 dB and 0.9360, respectively.
Two xMMSE reconstructed separately with the application
of NET1 and NET2 are presented in Figure 5B and variance
maps are presented as well. The variance of the samples
that are drawn with NET2 is less than those drawn with
NET1, which means that we are more confident about the
reconstruction using NET2. When we zoom into the region
that has more complicated structures, the boundaries
between white matter and gray matter are more distinct in
the image recovered with NET2 and the details are more
obvious, as shown in Figure 5C. Hence, increasing the
number of noise scales in NET2 relative to NET1 reduces
the number of iterations and improves the quality of
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(A)

(B)

(C)

F I G U R E 4 Multicoil reconstruction with NET1. Results: (A) The curves of peak-signal-noise-ratio (PSNR) and similarity index (SSIM)
over iterations for xMMSEs estimated by averaging a different number of samples. (B) Zero-filled, xMMSE, variance maps, truth and mask are
presented. The final PSNR and the SSIM of xMMSE are 34.05dB and 0.9050, respectively. (C) The error maps between different xMMSEs and the
ground truth are presented.

reconstruction using score networks of comparable size.
More noise scales make chains constructed with NET2
exploit the prior knowledge from training image dataset
more effectively than chains constructed with NET1 which
has fewer noise scales.

4.4 Investigation of the burn-in phase

The two sets of xMMSE are presented in Figure 6. In
Figure 6A, the earlier we split chains, the closer the xMMSE
gets to the truth. Especially, when we zoom into the
region that has complicated structures (indicated by the
red rectangle), the longer chains make fewer mistakes.
The slightly distorted structure is seen in (xMMSE, 60) high-
lighted with blue circles. The distortion has disappeared
in (xMMSE, 0) but some details are still missing. However,
given more k-space data points, the longer chains do not

cause a huge visual difference in the xMMSE as shown in
Figure 6B, even though there is a slight increase in PSNR
and SSIM. Although fewer data points mean more uncer-
tainties, longer chains permit better exploration of the
solution space, as shown by this experiment. Here, the
image (xMMSE, 60) took about one fourth of the time (4 min
and 30 s) to compute than the image (xMMSE, 0). For moder-
ate undersampling rates, a burn-in phase is recommended
for reducing computation time.

4.5 Investigation of the MAP

In Figure 7, we plotted the curves of PSNR and SSIM over
extended iterations for NET2 and presented reconstruc-
tions that are from the MMSE and MAP estimator. As
indicated by zoom-in images and curves in Figure 7A,C,
the extended samples converge to a consistent estimate
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LUO et al. 305

F I G U R E 5 Effect of using continuous noise scales in NET2. (A) The convergence curves of peak-signal-noise-ratio (PSNR) and
similarity index (SSIM) over iterations for NET2. (B) Reconstructed minimum mean square error and variance maps for NET2 and NET2.
(C) Zoomed view of selected structures (yellow circle, red arrow).

of the MAP. Measured by PSNR and SSIM, the MAP has
better quality than individual samples. As expected, the
MMSE obtained from averaging 10 (nonextended) samples
has better PSNR and SSIM than the MAP.

4.6 Comparison to 𝓵1-regularized
Reconstruction

The reconstructions with different methods are presented
in Figure 8. 𝓁1-ESPIRiT denotes the reconstruction with
the pics command of BART toolbox using 𝓁1-wavelet
regularization (0.01), which mostly recovers general
structures while smoothing out some details. In xMMSE,
the majority of details are recovered, and the texture
is almost identical to the ground truth, although some
microscopic structures are still missing. Each subject
has 16 slices and the metrics of three subjects presented
in Table S3 are the average over slices of each subject.
It is worth mentioning that PSNR and SSIM are influ-
enced by the value-range of a slice in the evaluation of
MR images.

4.7 Transferability

Figure 9 shows a NET3 trained with T2 FLAIR contrast
used to reconstruct a T1 FLAIR image (red box) in com-
parison to a T2 FLAIR image. No loss of quality can be
observed.

4.8 Comparison to fastMRI challenge

As discussed in Reference 44, the ground truth matters
when computing comparison metrics. We plotted the met-
rics of 30 volumes against a root sum of squares and a coil
combined image (CoilComb) in Figure S3, which shows
XPDNet favors root sum of squares that was used as labels
for training it while xMMSE favors the other. Besides, the
data range can be determined slice by slice or volume by
volume, and the influences of that are not ignorable.

Both methods provide nearly aliasing-free reconstruc-
tion at four- or eightfold acceleration. However, the hallu-
cinations appear when using eightfold acceleration, high-
lighted with the green color (cf. Figure 10).
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306 LUO et al.

(A)

(B)

F I G U R E 6 To investigate the burn-in phase the effect of splitting chains at different time points is shown for NET2 for reconstruction
with (A) 10% k-space data points and (B) 20% k-space data points.

F I G U R E 7 Investigation of the maximum a posterior (MAP) reconstructed with NET2. 200 extended iterations after random exploration
versa a deterministic estimate of MAP that are indicated by solid and dashed lines, respectively. (A) The curves of peak-signal-noise-ratio
(PSNR) and similarity index (SSIM) over iterations. (B) The subfigure variance1 and variance2 were computed from unextended samples and
extended samples respectively. xMAP is an extended sample. (C) The zoom-in region of nine extended samples and the ground truth.
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LUO et al. 307

F I G U R E 8 Comparison
of the minimum mean square
error computed with NET3 to
the 𝓁1-wavelet regularized and
zero-filled reconstruction. The
high resolution image (320 ×
320) was reconstructed from
k-space data using 10-fold
undersampling. The
regularization parameter was
set to 0.01.

F I G U R E 9
Transferability: Reconstruction
of T2 and T1 fluid-attenuated
inversion recovery images
(FLAIR) (red box) using a
Poisson-disc pattern with 8×
undersampling in k-space using
NET3 trained on T2 FLAIR
images.

All in all, a deep learning-based method has enough
capability to generate a realistic-looking image even when
the problem is highly underdetermined as a result of
undersampling, but the uncertainties inside it cannot be
ignored.

5 DISCUSSION

Generally, the Bayesian statistical approach provides a
foundation for sampling the posterior p(x|y) and a natu-
ral mechanism for incorporating the prior knowledge that
is learned from images. The generative model is used to
construct Markov chains to sample the posterior. The uti-
lization of probabilistic generative models allows: (1) flex-
ibility for changing the forward model of measurement;
(2) exact sampling from the posterior term p(x|y); and (3)
the estimation of uncertainty due to limited k-space data
points.

5.1 Uncertainties of reconstruction

One advantage of the proposed approach over classical
deterministic regularization methods is that it allows the

quantification of uncertainties of the reconstruction with
the variance map. That requires MCMC sampling tech-
nique. The loss of spatial information of coils leads to
the failure of unfolding, as demonstrated in Section 4.1.
High undersampling implies a high uncertainty about the
solution, which may lead to hallucinations as observed
in Reference 42 and Figure 10. The regions with alias-
ing correspond to the high variance areas of the uncer-
tainty map. With multiple coils, the reduction of high
frequency data points in k-space leads to the loss of fine
details, as demonstrated in Section 4.2. The xMMSE rep-
resents the reconstruction with minimum mean square
error and the variance map evaluates the confidence inter-
val of xMMSE. Furthermore, it is possible to derive error
bounds from the variance of the posterior as reported
Reference 45.

5.2 Overfitting and distortion

The proposed algorithm is an iterative refining procedure
that starts from generating coarse samples with rich varia-
tions under large noise, before converging to fine samples
with less variations under small noise. For early iterations
of the algorithm, each parameter update mimics stochastic
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308 LUO et al.

F I G U R E 10 Comparison to fastMRI challenge. From the leftmost to rightmost column, reconstructions are 𝓁1-ESPIRiT, XPDNet,
xMMSE highlighted with confidence interval, xMMSE and a fully sampled coil-combined image (CoilComb). Hallucinations appear when using
eightfold acceleration along the phase-encoding direction (horizontal) and are highlighted with the confidence interval after thresholding.
Selected regions of interests are presented in a zoomed view.

gradient descent; however, as the algorithm approaches a
local minimum, the gradient shrinks and the chain pro-
duces the samples from the posterior. Lastly, we noticed
that the balance between the learned transition and the
data consistency plays an important role generally in the
generation of realistic samples; here we refer readers to
Figure S4. The larger 𝜆, the stronger the consistency of
data. Besides, we found that a large value of K is required
for using the discrete noise conditional score network in
Algorithm 1 while a smaller value is sufficient for the con-
tinuous noise scales. While the N in Algorithm 1 is larger
for the continuous case, the total number of iterations in
both cases is comparable.

5.3 Computational burden

The promising performance of this method comes at the
price of demanding computation. It takes around 10 min

to reproduce the results in Figure 5 while 𝓁1-ESPIRiT
takes about 5 s with BART for a single slice. The possible
solutions to the computation burden are to: (1) accelerate
the inferencing of neural networks; (2) parallelize the
sampling process when multiple chains are used; and
(3) reduce the number of iterations using more efficient
MCMC sampling techniques. Furthermore, reducing
the scale of networks is also viable. The introduction of
burn-in experiment in Section 4.4 is a direct way to over-
come this shortcoming when the undersampling factor is
moderate.

5.4 Relationship to generative models

To our knowledge, the construction of image models to
exploit prior knowledge was first introduced in Reference
46 in which the handcrafted model which extracts edge
information was used for image restoration. Following that
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framework, the learned generic image priors from gener-
ative perspective are investigated in References 25,47,48,
which permits more expressive modeling. In the medical
imaging field, image priors learned with variational
autoencoder10,13 and PixelCNN11,15 were applied to MRI
image reconstruction. As a comparison to the method
in Reference 11, the result is presented in Figure S5.
Compared with some unrolled network based deep learn-
ing image reconstruction methods, the application of
image priors is independent of k-space data and coil sensi-
tivities, which permits a more versatile use of the method
using different k-space acquisition strategies.

5.5 Limitations

PSNR and SSIM only give a partial and distorted view of
image quality. The influence of the ground truth and noise
properties of the background have a severe influence,
as does the selected data range used for computing the
metrics. Thus, rating of image quality by human readers
would be an important next step in the evaluation of the
technique. Also the clinical usefulness of the uncertainty
maps requires further investigations. To facilitate the use
in clinical studies, we implemented the sampling in the
BART toolbox.49,50

6 CONCLUSION

The proposed reconstruction method combines concepts
from machine learning, Bayesian inference and image
reconstruction. In the setting of Bayesian inference, the
image reconstruction is realized by drawing samples
from the posterior term p(x|y) using data-driven Markov
chains, providing a minimum mean square reconstruc-
tion and uncertainty estimation. The prior information
can be learned from an existing image database, where the
generic generative priors based on the diffusion process
allow for flexibility regarding contrast, coil sensitivities,
and sampling pattern.
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FIGURE S1: Samples and xMMSE from intermediate distri-
butions are presented here. Each xMMSE is the average over
10 samples.
FIGURE S2: Overview of RefineNet and refine blocks
FIGURE S3: PSNR and SSIM metrics for different ground
truths and data ranges.
FIGURE S4: Samples reconstructed with different 𝜆. Two
selected samples with a particular 𝜆 are presented in (A)
and (B). The variance maps over 10 samples reconstructed
with each 𝜆 are shown in (C).
FIGURE S5: Reconstruction using different prior-based
methods with Poisson-disc sampling with 10x undersam-
pling in k-space.
TABLE S1: Architectures of the score networks.
TABLE S2: Hyperparameters for training
TABLE S3: Average PSNR (dB) and SSIM (%) for test
subjects
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APPENDIX A. REWRITE IN TERMS OF POS -
TERIOR

Because the forward diffusion is a Markov process and
start at x0, with Bayes’ rule we have

q (xi|xi−1, x0) = q (xi−1|xi)
q (xi|x0)

q (xi−1|x0)
. (A1)

Substituting density function into Equation (A1) yields

q(xi−1|xi, x0) = q(xi|xi−1) ⋅
q(xi−1|x0)
q(xi|x0)

. (A2)
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= 1, which is satisfied with Equation (5), we
have
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where
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APPENDIX B. KL DIVERGENCE OF TWO
GAUSSIAN DISTRIBUTIONS

Let p(x) =  (𝝁1, 𝜎
2
1 I) and q(x) =  (𝝁2, 𝜎

2
2 I) and

the KL divergence is defined by

DKL(P||Q) =
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Therefore,
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where Np is the dimensionality n × n × 2. Noting that
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