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Purpose: To develop a deep learning-based Bayesian estimation for MRI 
reconstruction.
Methods: We modeled the MRI reconstruction problem with Bayes’s theorem, fol-
lowing the recently proposed PixelCNN++ method. The image reconstruction from 
incomplete k-space measurement was obtained by maximizing the posterior possibil-
ity. A generative network was utilized as the image prior, which was computationally 
tractable, and the k-space data fidelity was enforced by using an equality constraint. 
The stochastic backpropagation was utilized to calculate the descent gradient in the 
process of maximum a posterior, and a projected subgradient method was used to 
impose the equality constraint. In contrast to the other deep learning reconstruction 
methods, the proposed one used the likelihood of prior as the training loss and the 
objective function in reconstruction to improve the image quality.
Results: The proposed method showed an improved performance in preserving 
image details and reducing aliasing artifacts, compared with GRAPPA, �

1
-ESPRiT, 

model-based deep learning architecture for inverse problems (MODL), and vari-
ational network (VN), last two were state-of-the-art deep learning reconstruction 
methods. The proposed method generally achieved more than 3 dB peak signal- 
to-noise ratio improvement for compressed sensing and parallel imaging reconstruc-
tions compared with the other methods.
Conclusions: The Bayesian estimation significantly improved the reconstruction 
performance, compared with the conventional �

1
-sparsity prior in compressed sens-

ing reconstruction tasks. More importantly, the proposed reconstruction framework 
can be generalized for most MRI reconstruction scenarios.
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1  |   INTRODUCTION

In compressed sensing MRI reconstruction, the commonly 
used analytical regularization such as �1 regularization can 

ensure the convergence of the iterative algorithm and improve 
MR image quality.1 The conventional iterative reconstruc-
tion algorithm with analytical regularization has an explicit 
mathematical deduction in gradient descent, which ensures 
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the convergence of the algorithm to a local or global optimal 
and the generalizability. Besides, the dictionary learning is 
an extension of analytical regularization, providing an im-
provement over the �1 regularization in specific applications.2 
The study of analytically regularized reconstruction mainly 
focused on choosing the appropriate regularization function 
and parameters. As an extension of analytical regularization, 
the deep learning reconstruction was employed as an un-
rolled iterative algorithm for solving the regularized optimi-
zation3,4 or used as a substitute for analytic regularization.5,6  
With the advances of deep learning methodology, research 
started shifting the paradigm to structured feature repre-
sentation and recovery of MRI, such as cascade,3 iterative 
with fidelity term,4-6 and generative6 deep neural networks. 
Especially, the method proposed in3 recast the compressed 
sensing reconstruction into a specially designed neural net-
work that still partly imitated the analytical data fidelity and 
regularization terms. In that study, the analytical regulariza-
tion term was replaced with convolutional layers and a spe-
cially designed activation function.3 In a latter study, several 
data-consistency layers were embedded in a feed-forward 
convolutional network to keep the reconstructed image con-
sistent with k-space data.5 In another study, a discriminator 
(from a generative adversarial network) was used to create 
an image manifold, ensuring the reconstruction can explore 
the feasible data space, along with the data consistency lay-
ers.6 In a recent study, following the well-known “unrolling” 
of iterative reconstruction approach, a semi-iterative convo-
lutional network was also developed as a model-based deep 
learning architecture for inverse problems (MODL).4 In a 
more recent study, a sophisticated framework for general-
ized compressed sensing reconstruction was formulated as a 
variational network (VN) that was embedded in an unrolled 
gradient descent scheme.7 These deep learning methods may 
show improved performance in some predetermined acqui-
sition settings or pretrained imaging tasks. However, they 
also lack flexibility when used with changes in MRI under- 
sampling scheme, the number of radio-frequency coils, and 
matrix size or spatial resolution. Such restriction is caused 
by the embedment of k-space data fidelity and the regulariza-
tion terms into neural network implementations. Therefore, it 
was preferable to separate the k-space data fidelity and neural 
network-based regularization for improving the flexibility in 
changing MRI acquisition configurations.

This study applied Bayesian estimation to model the MRI 
reconstruction problem, and the statistical representation of 
an MRI database was used as a prior model. In Bayesian es-
timation, the prior model is required to be computationally 
scalable and tractable.8,9 The scalability indicates that the 
prior model has an explicit probabilistic distribution func-
tion, which can be used as loss function for both network 
training and image reconstruction.8-10 The tractability of the 

prior model means the probability of an given image can be 
calculated directly without any approximation, besides the 
gradient that facilitates the maximization of posterior distri-
bution can be calculated by stochastic backpropagation.8,9 In 
such Bayesian estimation, the image to be reconstructed was 
referred to as the parameters of the Bayesian model, which 
was conditioned on the measured k-space data (as the poste-
rior). Bayes’s theorem expressed the posterior as a function 
of the k-space data likelihood and the image prior. Recently, 
a variational autoencoder (VAE) was applied as the deep den-
sity prior in MRI reconstruction, under a Bayesian estimation 
framework,11 but the evidence lower bound (ELBO) used in 
VAE is an approximation density model. The ELBO is cal-
culated via Monte Carlo sampling which leads to expensive 
computational cost. Moreover, the general challenge of VAE 
is to match the conditional distribution in latent space to the 
explicit distribution.12 For the image prior, Refs. [13,14] pro-
posed a generative deep learning model, providing a tracta-
ble and scalable likelihood. In those studies, the image prior 
model was written as the multiplication of the conditional 
probabilities those indicated pixel-wise dependencies of 
the input image. The k-space data likelihood described how 
the measured k-space data was computed from a given MR 
image. The relationship between k-space data and MR image 
can be described, using the well-known MRI encoding ma-
trix in an equality constraint.15 With such computationally 
scalable and tractable prior model, the maximum a posterior 
can serve as an effective estimator9 for the high dimensional 
image reconstruction problem tackled in this study. To sum-
marize, the Bayesian estimation for MRI reconstruction had  
2 separate models: the k-space likelihood model that was used 
to encourage data consistency and the image prior model that 
was used to exploit knowledge learned from an MRI database.

This paper presented a generic and interpretable deep 
learning-based reconstruction framework, using Bayesian es-
timation. It employed a generative network as the MR image 
prior model. The proposed framework was capable of ex-
ploiting the MR image database with the prior model, regard-
less of the changes in MR imaging acquisition settings. Also, 
the reconstruction was achieved by a series of estimations 
those employed the maximum likelihood of posterior with 
the image prior, that is, applying the Bayesian estimation 
repeatedly. The reconstruction iterated over the data fidelity 
enforcement in k-space and the image refinement, using the 
Bayesian estimation. During the iteration, the projected sub-
gradient algorithm was used to maximize the posterior. The 
method is theoretically described, which was adapted from 
the methodology proposed by others,13 and then demon-
strated in different MRI acquisition scenarios, including 
parallel imaging, compressed sensing, and non-Cartesian re-
constructions. The robustness and the reproducibility of the 
algorithm were also experimentally validated.
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2  |   THEORY

The proposed method applied a generative neural network, as 
a data-driven MRI prior, to an MRI reconstruction method. 
This section contained an MRI reconstruction method using 
Bayes’ theorem and a generative neural network-based MRI 
prior model, a pixel-wise joint probability distribution for im-
ages, using the PixelCNN++.13

2.1  |  MRI reconstruction using 
Bayes’ theorem

With Bayes’ theorem, one could write the posterior as a prod-
uct of likelihood and prior: 

where f(y|x) is probability of the measured k-space data y∈ℂ
M 

for a given image x∈ℂ
N, N is the number of pixels and M is 

the number of measured data points. g(x) is the prior model 
that estimates the distribution of MR images. In order to avoid 
the confusion with the likelihood occurs in modelling the prior, 
f(y|x) is referred to as k-space likelihood model. The image re-
construction is achieved by exploring the posterior f(x|y) with 
an appropriate estimator. The maximum a posterior estimation 
(MAP) could provide the reconstructed image x̂ that is given by: 

In this way, the reconstruction problem is recast as posterior 
probability calculations. Equation (2) indicates 2 models are 
required for the estimation: the prior model, g(x), and k-space 
likelihood model, f(y|x).

2.2  |  Expressing prior using 
model parameters

The proposed method estimated the distribution of MR 
image features concerning parameters of a mixture distri-
bution model given by a generative network.13 The mixture 
distribution model (or the distribution of MR image fea-
tures) was then used to compute the likelihood of images, 
serving as a prior model for reconstruction (as illustrated in  
Figure 1). The generative network was commonly used as 
a parameterized model, approximating the distribution of 
image features.13 There were 3 reasons for using such mix-
ture distribution model and generative network approxima-
tion13: (a) hierarchical architectures allowed the network to 
capture complex structure in the image, (b) the mixture of 
conditional distribution characterized an intrinsic dependence 

among pixels and factorized the probability density function 
for an image over its pixels, (c) they discretized/instanced lo-
gistic mixture likelihood for using pixelCNN++.13 For MRI 
reconstruction, the number of image channels was changed 
from 3 (ie, RGB channels for color image) to 2 (ie, real and 
imaginary parts for MR image). For each image pixel, the 
continuous variable ν denoted the real or the imaginary part 
of a pixel, � = Re(xi,j) or Im(xi,j). Like in the VAE and pix-
elCNN++,13,16 the distribution of ν was a mixture of the  
logistic distribution, given by 

Here, �i was the mixture indicator, �i and si were the mean 
and scale of logistic distribution, K was the number of mixture 
distributions, respectively. It should be noted that the logistic 
distribution function was interchangeable with any distribution 
function for creating a mixture with sufficient representation 
capacity. However, for a tractable computation, the logistic dis-
tribution was recommended in the previous study.13 Then the 
probability on each observed ν of the pixel was computed as13 

where σ was the logistic sigmoid function, d was the smallest 
discretized interval for ν. Furthermore, in,13,14 each pixel was 
dependent on all previous pixels up and to the left in an image, 
as shown in Figure 1. The derivation from Equations (3) to (4) is 
provided in Appendix A. The conditional distribution of the sub-
sequent pixel (Re(xi,j), Im(xi,j)) at position (i, j) was given by13 

where the Ci,j = {xi−1,j, xi−2,j, … , x1,1} denoted the context 
information which was comprised of the mixture indicator 
and the previous pixels as showed in Figure 1, α was the co-
efficient related to mixture indicator and previous pixels, �Re 
was the μ of the real channel of Ci,j, and �Im, sRe, sIm were 
subscripted in the same way. p(Re(xi,j), Im(xi,j)|Ci,j) was also 
a joint distribution for both real and imaginary channels. The 
real part of the first pixel, that is, x(1) = x1,1 in Figure 1, was 
predicted by a mixture of logistics as described in Equation (3).  
This definition assumed that the mean of mixture compo-
nents of the imaginary channel was linearly dependent on the 
real channel. In this study, the number of mixture compo-
nents was 10. In this model, mixture indicator was shared 

(1)f (x|y)=
f (y|x)g(x)

f (y)
∝ f (y|x) g(x)

(2)x̂MAP(y)= arg max
x

f (x|y)= arg max
x

f (y|x) g(x)

(3)�∼

K∑

k=1

�klogistic(�k, sk).

(4)

P(�;�,�, s)=

K∑

k=1

�k[�((�+d∕2−�k)∕sk)−�((�−d∕2−�k)∕sk)],

p(xi,j|Ci,j)= p(Re(xi,j), Im(xi,j)|Ci,j)

=P(Re(xi,j);𝜋(Ci,j),𝜇Re(Ci,j), sRe(Cij))

×P(Im(xi,j);𝜋(Ci,j), 𝜇̂Im(Ci,j, Re(xi,j)), sIm(Ci,j))

𝜇̂Im(Ci,j, Re(xi,j))=𝜇Im(Ci,j)+𝛼(Ci,j)Re(xi,j),
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      |  2249LUO et al.

between 2 channels. The n × n image could be considered 
as an vectorized image x = (x(1), … , x(n2)) by stacking pix-
els from left to right and up to bottom of one another, that 
is, x(1) = x1,1, x(2) = x2,1, … , and x(n2) = xn,n, as illustrated in 
Figure 1. The joint distribution of the image vector could be 
expressed as following13: 

π, μ, s, α were the parameters of mixture distribution for each 
pixel as were defined in Equations (4)-(6). The generative net-
work PixelCNN++ was expected to predict the joint proba-
bility distribution of all pixels in the input image.13 Therefore, 
the network ���(x,Θ) was trained by maximizing the likeli-
hood in Equation (5), as the training loss was given by 

where Θ contained the trainable parameters within the network. 
After training, the network could be used as the image prior. 
Here, we defined the prior model g(x) as 

For example, if the complex images x for training had a size of 
(128, 128), and the number of mixture distribution K = 10, then 
π, μ, s, α would get dimensions of (128, 128, 10, 1), (128, 128, 
10, 2), (128, 128, 10, 2), and (128, 128, 10, 1), respectively. To 
summarize, a prior model of x was defined in Equations from 
(2) to (7) that could be considered as a data-driven model, uti-
lizing the knowledge learned from an image database.

2.3  |  Image reconstruction by MAP

The measured k-space data y was given by 

(5)p(x;�,�, s,�) = p(x(1))

n2∏

i=2

p(x(i)|x(1), … , x(i−1)).

(6)Θ̂= arg max
Θ

p(x; NET(x,Θ)),

(7)g(x)=p(x; ���(x, Θ̂)).

(8)y=Ax+�,

F I G U R E  1   A, Overview of the MAP reconstruction. Conditional model in13,14 defined the probability of image pixel (yellow) xi,j dependent 
on all the pixels from its up and left side (green). B, In this method, we reconstructed images with 256 × 256 matrix size, using the prior model g(x) 
that was trained with 128 × 128 images and illustrated in Supporting Information Figure S1. To reconcile this mismatch, we split one 256 × 256 
image into four 128 × 128 patches for applying the prior model. After updating s(k+1), 4 patches for 1 image were merged to form an image with the 
original size of 256 × 256. Then the merged image was projected onto {x|y = Ax + ɛ} in Equation (11). Furthermore, the random shift along phase 
encoding direction was applied to mitigate the stitching line in-between patches
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2250  |      LUO et al.

where A was the encoding matrix, x was MR image, and ɛ 
was the noise. The matrix A  =  GFS, where S:ℂN

→ℂ
N×� 

coil sensitivity maps, γ the number of coils, F:ℂN×�
→ℂ

N×� 
the Fourier operator, and G:ℂN×�

→ℂ
M×� the k-space sam-

pling operator/mask. In this study, the additive noise ɛ was 
assumed to follow a Gaussian distribution with zero mean. 
Substituting Equation (7) into the log-likelihood for Equation 
(2) yielded 

From the data model, the log-likelihood term for f(y|x) had 
less uncertainty, considering the MR imaging principles, for a 
given image x, the probability for k-space, y, that is, f(y|x) when 
y = Ax+ɛ, was close to a constant with the uncertainty from 
noise that was irrelevant and additive to x. Hence, Equation (9) 
could be rewritten as 

The equality constraint for data consistency was the 
result of eliminating the first log-likelihood term in 
Equation (9). The projected subgradient method was used 
to solve the equality constrained problem.17,18 In18 au-
thors proposed a stochastic backpropagation method for 
computing gradients through random variables for deep 
generative models. In PixelCNN++, the stochastic back-
propagation provided the subgradient ∇

x
log g(x), where 

g(x) = p(x; ���(x, Θ̂)), for minimizing the log-likelihood 
in Equation (10). We empirically found that the dropout 
(which applied to gradient update) was necessary, when 
using the gradient to update x in Equation (10).19 To sum-
marize, the MAP-based MRI reconstruction had the fol-
lowing iterative steps:

Repeat
  Get the descent direction ∇

x(k) log g(x(k))

  Pick up a step size �k = 1∕k or use a fixed step size
  Update z(k+1) = x

(k)−�k∇x(k) log g(x(k))

  Projection x(k+1) = arg min
x∈X

1

2
‖x−z

(k+1)‖2
2

Until ‖Az−y‖2
2
< 𝜖 or k>maxIter

The projection of z onto {x|y = Ax + ɛ} was given by 

Therefore, the generative network as a prior model was incor-
porated into the reconstruction of x through the Bayesian infer-
ence based on MAP.

3  |   METHODS

3.1  |  MRI data and preprocessing

Both knee and brain MRI data were used to test the recon-
struction performance of the proposed method. The knee 
MRI data (multi-channel k-space data, 973 scans) were 
downloaded from fastMRI reconstruction database.20 As 
such, NYU fastMRI investigators provided data but did not 
participate in analysis or writing of this report. A listing of 
NYU fastMRI investigators, subject to updates, can be found 
at: fastmri.med.nyu.edu. The primary goal of fastMRI is to 
test whether machine learning can aid in the reconstruction 
of medical images. The knee data had 2 contrast weightings: 
proton-density with and without fat suppression (PDFS and 
PD). Scan parameters included 15-channel knee coil and 2D 
multislice turbo spin-echo (TSE) acquisition, and other set-
tings which could be found in Ref. [20].

For brain MRI, we collected 2D multislice T1 weighted, 
T2 weighted, T2 weighted fluid-attenuated inversion recov-
ery (FLAIR), and T∗

2
 weighted brain images from 16 healthy 

volunteers examined with clinical standard-of-care protocols, 
approved by the Institutional Review Board of The University 
of Hong Kong/Hospital Authority Hong Kong West Cluster. 
The consent was obtained from all volunteers. All brain data 
were acquired using our 3T MR scanner (Philips, Achieva), 
and an 8-channel brain RF coil. T1 weighted, T2 weighted, and 
T2 weighted FIAIR images were all acquired with TSE read-
out. Meanwhile, T∗

2
-weighted images were obtained using a 

gradient-echo sequence. Brain MRI parameters for 4 contrast 
weightings were listed in Supporting Information Table S1.

Training images were reconstructed from multichannel 
k-space data without undersampling. Then, these image data-
sets after coil combination were scaled to a magnitude range 
of [−1, 1] and resized to an image size of 256 × 256. The 
training of PixelCNN++ model required a considerable com-
putational capacity when a large image size was used. In this 
study, the 128 × 128 was the largest size that our 4-graphics 
processing unit (GPU) server could handle. Hence, the original  
256 × 256 images were resized into 128 × 128 low-resolution  
images by cropping in k-space for knee MRI. For brain MRI, 
we split each raw 256  ×  256 image into four 128  ×  128 
image patches, before fed into the network for training. Real 
and imaginary parts of all 2D images were separated into 2 
channels when inputted into the neural network. For the data 
partitioning, we first separated all multi-slice volumes into 
training and testing groups. Then we split the volume into 
slices (ie, 2D images). For knee MRI, 15541 images were 
used as the training dataset, and 170 images were used for 
testing. For brain MRI, 1300 images were used as the train-
ing dataset, and 300 images were used for testing. For data 
analysis, root-mean-square error (RMSE in percent), peak 

(9)x̂MAP(y)= arg max
x

log f (y|x)+ log p(x; ���(x, Θ̂)).

(10)
x̂MAP(y)= arg max

x

log p(x; ���(x, Θ̂)) s.t. y=Ax+�

(11)(z)= z−A
∗(AA

∗)−1(Az−y).
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signal-to-noise ratio (PSNR, in dB) and structural similar-
ity index (SSIM, in percent) were used to quantify the image 
accuracy.

3.2  |  Deep neural network

As illustrated in Figure 1, when predicting the current 
pixel, that is, yellow square in Figure 1 or xi,j, pixels to 
the left and above were used as the inputs for the estima-
tion, that is, green squares or Ci,j = {xi−1,j, xi−2,j, … , x1,1}.  
In,21 the convolution stream was split into 2 network 
stacks: one conditioned on the “current row so far,” that is, 
{xi−1,j, xi−2,j … , x1,j}, and another conditioned on all rows 
above, that is, {xn,j−1, xn−1,j−1 … , x1,1}, creating upstream 
and downstream as shown in Supporting Information 
Figure S1. The upstream and downstream first pass through 
2 blocks that had “padding” and “shifting” functions for 
removing blinding spots.21 Then paired residual blocks 
(Res-blocks) that contained 3 gated ResNets were applied. 
A gated ResNet had 3 convolutional layers with the middle 
layer as a gated layer.21 In the Res-block, each convolution 
layer had 100 filters with a kernel size of 3 × 3. In between 
the first and second Res-blocks, as well as the second and 
third Res-blocks, the network contained subsampling op-
erations, implemented using a 2 × 2 stride convolution. In 
between the fourth and fifth Res-blocks, as well as the fifth 
and sixth Res-blocks, the network had a transpose stride 
convolution, that is, 2 × 2-upsampling. These subsampling 
and upsampling caused information loss; therefore, the net-
work also employed short-cut connections in-between Res-
blocks to recover information. The short-cut connections 
went from the layers in the first Res-block to the corre-
sponding layers in the sixth Res-block, and similarly be-
tween Res-blocks 2 and 5, and Res-blocks 3 and 4.

The PixelCNN++ was modified from the code in https://
github.com/opena​i/pixel​-cnn. We implemented the recon-
struction algorithm using Python, as explained in Equation (11)  
and Appendix. With the trained prior model, we imple-
mented the iterative reconstruction algorithm for maximiz-
ing the posterior while enforcing the k-space data fidelity (as 
explained in Appendix and Figure 1. Only 2 deep learning 
models were trained and utilized, 1 for knee MRI with 2 con-
trast weightings, and another for brain MRI with 4 contrast 
weightings. These 2 models can support all experiments per-
formed in this study with variable undersampling patterns, 
coil sensitivity maps, channel numbers, image sizes, and tra-
jectory types. Our networks were trained in Tensorflow soft-
ware, and on 4 NVIDIA RTX-2080Ti graphic cards. Other 
parameters were 500 epochs, batch size = 4, and Adam opti-
mizer. It took about 4 days to train the network for knee data-
set and 2 days for brain dataset under the abovementioned 
configuration.

3.3  |  Parallel imaging and �1 or �2 
regularization reconstruction

The generalized autocalibrating partial parallel acquisition 
(GRAPPA) reconstruction was performed with a block size of 
4 and 20 central k-space lines as the autocalibration area.22 We 
simulated GRAPPA accelerations with undersampling factors 
from 2 to 4. The representative undersampling masks were shown 
in Supporting Information Figure S2. We chose l1-eigenvalue  
approach to autocalibrating parallel MRI (ESPIRiT),1,23,24 
MODL,4 and VN7 as baseline methods for comparison. They 
were originated from analytical regularizations methods. The  
�1 -ESPIRIT exploited the sparsity of image, and the MODL 
was a deep learning method for compressed sensing reconstruc-
tion, trained via minimizing �2 or �1 reconstruction error. In 
the �1 -ESPIRiT reconstruction, we set the �1 regularization  
parameter to be 0.01. For the training of MODL, the setting fol-
lowed Ref. [4] when training MODL to reconstruct the under-
sampled knee data. The only difference was the k-space mask 
in Ref. [4] was 2D undersampled, while in the current study, 
the 1D undersampling was applied. The central 20 k-space lines 
were sampled which account for 7% of the full k-space of one 
256 × 256 image. The others in the outer region were picked 
randomly with certain undersampling rate for each single slice. 
VN method required fixing the sampling mask.7 When training 
VN, we repeated the process multiple times for using differ-
ent undersampling masks in this study. The sensitivity maps 
feed into our method, MODL, and VN were estimated from the 
central 20 × 20 k-space region, using the ESPIRiT function in 
Berkeley advanced reconstruction toolbox (BART).24

For the proposed method, MR images with 256  ×  256  
matrix size were reconstructed, using the prior model in 
Equation (7) that was trained by 128 × 128 images or image 
patches. During inference, the 256  ×  256 image was split 
into four 128 × 128 patches for applying the prior model, as 
shown in Figure 1. After updating s(k+1), 4 patches for 1 image 
were concatenated to form an image with the original size of 
256 × 256, before it was projected onto {x|y = Ax + ɛ} in  
Equation (11). The detailed algorithm was presented in the 
Appendix B. When using the patch-based approach, the ran-
dom shift along the phase encoding direction was applied to 
eliminate stitching lines. The random shift would move the dis-
continuity from edge to the center of patches, which was then 
erased by the next gradient updates. In Supporting Information 
Video S1, the evolution of restored image was presented.

3.4  |  Non-Cartesian k-space acquisition

In this experiment, spiral sampled k-space from the acquired 
T∗

2
-weighted k-space data was simulated. For spiral k-space 

sampling, the ground truth came from Cartesian sampling. 
The method proposed in Ref. [25] was used to design the spiral 
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2252  |      LUO et al.

trajectory. The full k-space coverage required 24 spiral inter-
leaves for the spatial resolution used in this study. Besides, 
the implementation of nonuniform fast Fourier transform was 
based on the method in Ref. [26]. For comparison, we used 
the conjugate gradient sensitivity encoding (CG SENSE), pro-
posed in Ref. [27], as a baseline method. Our implementation 
exactly followed the original paper of CG SENSE, which ap-
plied sensitivity encoding spatially in an L2 minimization, that 
is, min ‖Ax−y‖2, where A the sensitivity encoding and Fourier 
transform, x the image and y the undersampled k-space, CG 
was used as the solver. In the iterative CG reconstruction, 

forward and backward Fourier transforms were performed 
with NUFFT. The NUFFT function was compiled using the 
code from Jeffrey A. Fessler’s Lab (https://web.eecs.umich.
edu/fessl​er/), which used min-max interpolation.

3.5  |  Prospective experiment in vivo

To further validate the feasibility of proposed method, 
we implemented the prospective k-space undersam-
pling for GRAPPA and compressed sensing in a rapid 

F I G U R E  2   Comparisons on PD and PDFS contrasts using GRAPPA, VN, and the proposed reconstructions with R = 3 acceleration and 
256 × 256 matrix size. The intensity of error maps was 5 times magnified. The proposed method effectively eliminated noise amplification and 
aliasing artifact in GRAPPA reconstruction
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gradient-echo sequence with TE/TR = 16/770 ms. The image 
size was 256 × 256, and the resolution was 0.9 × 0.9 mm2. For 
GRAPPA, the acquisition was accelerated by a factor of 3,  
and 20 center lines were sampled. For compressed sens-
ing, only 15% phase-encoding lines were acquired, and the 
20 center lines were kept. Then, acquired k-space data were 
normalized by the maximum magnitude of zero-filled and 
reconstructed images. Finally, the images reconstructed via 
GRAPPA, �1-ESPIRiT, our method, and VN were compared.

4  |   RESULTS

4.1  |  Parallel imaging

Figures 2 and 3 show the comparison of knee and brain 
MRI reconstructed using GRAPPA, VN, and the proposed 
method. The proposed method had an improved perfor-
mance in recovering brain and knee image details and re-
ducing the aliasing artifacts, compared with GRAPPA and 

F I G U R E  3   Comparisons on T
1
,  

T
2
, and FLAIR-T

2
 weighted image 

reconstruction, using parallel imaging, VN, 
and the proposed reconstruction with R = 3 
acceleration and 256 × 256 matrix size. 
The intensity of error maps was 15 times 
magnified. The proposed method effectively 
eliminated the noise amplification in 
GRAPPA reconstruction
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2254  |      LUO et al.

VN. As expected, parallel imaging amplified the noise in 
the low coil sensitivity regions and along the undersam-
pled dimension. In contrast, error maps demonstrated in 
Figures 2 and 3 showed that both the proposed method 
and VN effectively eliminated the noise amplification 
and the aliasing artifacts. In the row (a) of Figure 4, the 
proposed method was demonstrated in prospective ac-
celerations in parallel imaging and compressed sensing 
scenarios, confirmed the results in retrospective experi-
ments. The performances of VN and the proposed meth-
ods were largely similar; however, the proposed method 
showed slight better preservation of boundaries between 
gray matter and white matter. More importantly, the pro-
posed method uniquely supported different undersampling 
masks without the need for retraining the deep learning 
model. Table 1 presents the comparison of GRAPPA, VN, 
and the proposed method for knee (N = 170) and brain  
(N = 300) MRI testing images. With the increase of the  
undersampling factor, the PSNR of the proposed method 
decreased less, compared with that of GRAPPA. In  
addition, with acceleration factor R = 2 in brain MRI, the 
proposed method showed 8 dB more improvement in the 
PSNR than GRAPPA. In Supporting Information Video S2,  
the brain images of T∗

2
 weighting reconstructed with 3-fold 

prospective acceleration k-space data from a volunteer 
were presented.

4.2  |  Compressed sensing reconstruction

In Figures 5 and 6, the �1-ESPIRiT and VN had caused ap-
parent blurring in the reconstructed images for both knee and 
brain MRI data. Both the �1-ESPIRiT and MODL methods 
caused residual aliasing artifacts. Meanwhile, the proposed re-
construction recovered most anatomical structures and sharp 
boundaries in knee and brain MR images, compared with those 
from �1-ESPIRiT, MODL and VN reconstructions, as shown 
on error maps in Figures 5 and 6. Besides, the row (b) of  
Figure 4 shows that the proposed method had slight better edge 
preservation and artifact suppression compared with VN. This 
observation was consistent with our prospective results. Table 1 
summarized reconstruction results using �1-ESPIRiT, MODL, 
VN and the proposed method. The proposed method generally 
showed more than 5 dB PSNR improvement compared with  
�1 -ESPIRiT, MODL and VN. In Supporting Information 
Video S3, the brain images of T∗

2
 weighting reconstructed with 

22% prospective k-space data from a volunteer were presented.

4.3  |  Preliminary result in non-Cartesian 
MRI reconstruction

In this study, we used a T∗
2
 weighted gradient-echo images to 

simulate the spiral k-space data with 4-fold acceleration. The 

F I G U R E  4   Comparison of different methods with prospective accelerations. The row (A) shows the images reconstructed from k-space data 
sampled in GRAPPA mask (R = 3). The row (B) shows the images reconstructed from k-space data sampled in CS mask (R = 22%)
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      |  2255LUO et al.

reconstructed images from the CG SENSE and the proposed 
method were compared in Figure 7. The proposed method 
showed apparent improvement regarding the aliasing artifact 
reduction and the preservation of T∗

2
 contrast between gray 

matter and white matter. The proposed method also showed a 
slight denoising effect on the reconstructed image compared 
with the ground truth. Noted that the same deep learning model 
used in the previous Cartesian k-space reconstruction experi-
ments in Figures 3 and 5 was applied to spiral reconstruction, 
without the need of re-training the deep learning model.

4.4  |  Phase maps

Figure 8 shows the phase maps from the proposed acceler-
ated reconstruction with 4-fold GRAPPA. Noted that the 
same deep learning model used in the previous brain experi-
ments was applied to this experiment, with phase informa-
tion preserved in all reconstructed images. The proposed 

deep learning method also showed slight de-noising effect 
on phase maps, while still preserved the major phase contrast 
even with high acceleration.

5  |   DISCUSSION

The proposed method can reliably and consistently recover 
the nearly aliased-free images with relatively high accelera-
tion factors. Meanwhile, as expected, the increase of image 
smoothing with high acceleration factors was noticed, re-
flecting the loss of intrinsic resolution. The estimated image 
from the maximum of the posterior can not guarantee the full 
recovery of the image details, that is, PSNR > 40 dB/SSIM 
>95% for a full recovery. However, at modest acceleration, 
the reconstruction from a maximum of posterior showed the 
successful reconstruction of the detailed anatomical struc-
tures, such as vessels, cartilage, and membranes in-between 
muscle bundles.

R factor Organ GRAPPA - VN Proposed

Parallel imaging

PSNR

R = 2 knee 35.24 ± 4.53 - 38.23 ± 2.35 57.31 ± 3.84

R = 3 knee 31.48 ± 3.21 - 35.53 ± 1.75 45.64 ± 2.20

R = 4 knee 26.39 ± 1.67 - 33.52 ± 1.37 39.51 ± 2.76

R = 2 brain 38.05 ± 4.73 - 46.19 ± 3.03 51.18 ± 2.77

R = 3 brain 31.60 ± 3.33 - 43.67 ± 2.74 45.43 ± 2.52

R = 4 brain 28.27 ± 2.84 - 40.51 ± 2.39 43.58 ± 2.66

SSIM

R = 2 knee 87.85 ± 8.01 - 93.99 ± 3.31 99.65 ± 0.32

R = 3 knee 76.82 ± 10.56 - 90.31 ± 4.18 97.95 ± 1.18

R = 4 knee 62.34 ± 6.47 - 86.39 ± 4.33 93.41 ± 3.03

R = 2 brain 83.48 ± 3.00 - 97.90 ± 1.37 98.10 ± 0.19

R = 3 brain 69.24 ± 5.53 - 96.74 ± 2.03 96.85 ± 4.36

R = 4 brain 58.32 ± 6.56 - 95.31 ± 2.45 95.54 ± 5.10

Sampling 
rate

Organ �1-ESPIRiT MODL VN Proposed

Compressive sensing

PSNR          

15% + 7% knee 30.81 ± 2.01 26.78 ± 3.19 31.87 ± 0.92 35.34 ± 3.13

20% + 7% knee 31.81 ± 2.23 31.30 ± 2.93 30.72 ± 0.62 37.14 ± 3.23

15% + 7% brain 32.73 ± 3.46 29.06 ± 3.24 33.95 ± 2.25 39.80 ± 2.73

20% + 7% brain 34.51 ± 3.94 30.70 ± 3.25 34.73 ± 2.26 41.18 ± 2.70

SSIM          

15% + 7% knee 78.97 ± 8.38 72.40 ± 9.29 82.50 ± 4.55 88.12 ± 5.66

20% + 7% knee 81.74 ± 8.30 86.50 ± 3.77 81.66 ± 3.84 91.27 ± 4.23

15% + 7% brain 87.58 ± 6.26 78.85 ± 7.23 89.86 ± 3.47 91.52 ± 6.26

20% + 7% brain 90.08 ± 6.03 82.67 ± 7.43 91.24 ± 3.54 92.48 ± 5.66

T A B L E  1   PSNR/SSIM comparisons 
(in dB/%, mean ± standard deviation) for 
parallel imaging, compressive sensing, and 
the proposed method on knee and brain MRI
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2256  |      LUO et al.

In this study, the results demonstrated the successful re-
construction of high-resolution image (ie, 256 × 256 matrix) 
with low-resolution prior (ie, trained with 128 × 128 matrix), 
confirming the feasibility of reconstructing images of dif-
ferent sizes without the need for retraining the prior model. 
The prior model was trained by 128 × 128 images; it was 
still valid and applicable for the reconstruction of a high- 
resolution image. The proposed methods provided more than 
8 dB improvement over the conventional GRAPPA recon-
struction at the 4-fold acceleration in knee MRI. Besides, in 
contrast to other deep learning-based methods, which focused 
on the �2 loss, the likelihood that was conditioned by pixel- 
wise dependencies of the whole image showed an improved 
representation capacity, leading to a higher reconstruction 
accuracy. The applicability of the proposed method in the 

patch-based reconstruction also suggested its high representa-
tion capacity and flexibility. Even when the inputs were image 
patches, the prior model could still recover the whole image.

The projected subgradient approach to solving Equation 
(10) was computationally inexpensive but converged slowly, 
as shown in Figure 9. For a random initialization, the algo-
rithm needed about 500 iterations to converge with a fixed 
step size. Meanwhile, we noticed that if the zero-filled- 
reconstructed image was used for initialization, the number 
of iterations required could be reduced to 100. Besides, the 
decay of residual norm stopped earlier than that of the log- 
likelihood, that is, when the residual norm stopped decaying, the 
likelihood can still penalize the error. This evidence indicated 
that using the residual norm as the �2 fidelity alone was sub-
optimal, and the deep learning–based statistical regularization  

F I G U R E  5   Comparison of different methods on PD and PDFS contrasts, using 27% 1D undersampled k-space and 256 × 256 matrix size. 
The intensity of error maps was 5 times magnified. The proposed method substantially reduced the aliasing artifact and preserved image details in 
compressed sensing reconstruction

 15222594, 2020, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.28274 by G

eorg-A
ugust-U

niversitaet, W
iley O

nline L
ibrary on [13/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



      |  2257LUO et al.

F I G U R E  6   Comparison of compressed sensing and deep learning approaches for T
1
, T

2
, and FLAIR weighted image reconstructions, using 

22% 1D undersampled k-space and 256 × 256 matrix size. The intensity of error maps was 10 times magnified. The proposed method substantially 
reduced the aliasing artifact and preserved image details in compressed sensing reconstruction
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2258  |      LUO et al.

can lead to a better reconstruction result compared with the 
�2 fidelity. Deep learning–based statistical regularization in 
the proposed method outperformed other conventional reg-
ularizations trained by image-level �2 loss. �2 loss did not 
give an explicit description of the relationship amid all pixels 
in the image, while the likelihood used in conjunction with 
the proposed image prior model was conditioned by the pix-
el-wise relationship and demonstrated superior performance 
compared with the conventional methods, under the current 
experimental setting.

Furthermore, the demonstrated image prior can be ex-
tended to a more elaborated form with clinical information, 
such as organs and contrast types, as the model inputs. For 
example, one could input the image prior with labels such 
as brain or knee. Then hypothetically, the image prior can 
be designed as a conditional probability for the given image 
label. In other words, the posterior would be dependent on 
both the k-space data and image labels. Moreover, the MR 
pulse sequence parameters could serve as image labels for the 

prior, such as echo time and repetition time. In short, the prior 
model can be used to describe clinical information or acquisi-
tion parameters. This setting opens up a future direction on a 
more elaborated image prior, incorporating clinical informa-
tion and MR sequence parameters, for more intelligent image 
representation and pattern detection.

In this study, the generative network solely served as 
an image prior model, in contrast to how neural network 
was used in other deep learning-based reconstructions.3-6 
Specifically, in previous studies,3-6 embedding k-space fi-
delity term into the network made the algorithm inflexible 
because image prior and undersampling artifacts were mixed 
during the training. The proposed method used the standard 
analytical term for fidelity enforcement; therefore, its flex-
ibility was comparable to the traditional optimization algo-
rithm, such as �1 regularization. Due to unavoidable changes 
of the encoding scheme, for example, the image size and the 
RF coils during MRI experiment in practice, it was essen-
tially needed to separate the learned component (the image 

F I G U R E  7   Comparison of the 
CG SENSE and proposed reconstruction 
for simulated spiral k-space with 4-fold 
acceleration (ie, 6 out of 24 spiral 
interleaves), acquired by T∗

2
 weighted 

gradient echo sequence. The intensity of 
error maps was 5 times magnified. The 
proposed method substantially reduced the 
aliasing artifact in spiral reconstruction. 
Noted that the same deep learning model 
used in the previous Cartesian k-space 
reconstruction was applied to spiral 
reconstruction, without the need of re-
training the deep learning model

F I G U R E  8   Phase maps from the ground truth and the proposed accelerated reconstruction with R = 4 and GRAPPA type of 1D 
undersampling. The raw images were acquired by T∗

2
 weighted gradient echo sequence. The proposed deep learning method preserved the major 

phase contrast even with high acceleration, R = 4. The error phase was 10 times magnified
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      |  2259LUO et al.

prior) from the encoding matrix used in the fidelity term in 
reconstruction. Besides, the proposed method showed the 
feasibility of incorporating the coil sensitivity information 
in the fidelity term, which enabled the changeable encoding 
scheme without the need of retraining the model.15,27 In sum-
mary, the separation of the image prior and the encoding ma-
trix embedded in the fidelity term made the proposed method 
more flexible and generalizable compared with conventional 
deep learning approaches.

6  |   CONCLUSION

In summary, this study presented the application of Bayesian 
inference in MR imaging reconstruction with the deep  
learning-based prior model. We demonstrated that the deep 
MRI prior model was a computationally tractable and effec-
tive tool for MR image reconstruction. The Bayesian infer-
ence significantly improved the reconstruction performance 
over that of conventional �1 sparsity prior in compressed sens-
ing. More importantly, the proposed reconstruction frame-
work was generalizable for most reconstruction scenarios.
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VIDEO S1 The evolution of image during the process of 
reconstruction
VIDEO S2 Reconstruction by the proposed method of a 
healthy volunteer for T∗

2
-weighted brain images with under-

sampling factor R = 3 (GRAPPA prospective experiment)
VIDEO S3 Reconstruction by the proposed method of a 
healthy volunteer for T

∗
2
-weighted brain images with 22% 

k-space (Compressie sensing prospective experiment)
TABLE S1 The scan parameters of different weightings used 
in brain MRI experiments
FIGURE S1 The diagram shows the PixelCNN++ network 
in,13 which was the prior model used in this study, that is, g(x) 
in Equation (7). Each ResNet block (gray) has a gated-resnet 
components. The last layer is fully connected. The input of 
network was x, outputs of network were parameters of mix-
ture distribution (π, μ, s, α), which were fed into the condi-
tional probability model in Equation (5)
FIGURE S2 k-space masks used in the compressed sens-
ing, parallel imaging, and deep learning reconstructions. 
Bright lines indicate the sampled frequency encoding lines 
in the 2D k-space, that is, the 1D undersamplings were 
simulated
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APPENDIX A
DERIVATION FOR THE 
PROBABILITY OF LOGISTIC 
DISTRIBUTION IN EQUATION 4
The probability density function of logistic distribution is as 
follow 

The cumulative distribution function of logistic distribution is 
as follow 

Therefore if we assume the ν follows the logistic distribution, 
the probability of ν in range from x − d/2 to x + d/2 is 

Similarly, if we assume the ν follows the mixture logistic 
distribution 

then, we have 

f (x;�, s) =
e−(x−�)∕s

s
(
1+e−(x−�)∕s

)2

=
1

s
(
e(x−�)∕(2s)+e−(x−�)∕(2s)

)2

F(x;�, s)=∫
x

−∞

f (x;�, s)=
1

1+e−(x−�)∕s

P(�;�, s) =
1

1+e−(�+d∕2−�)∕s
−

1

1+e−(�−d∕2−�)∕s

=�((�+d∕2−�)∕s)−�((�−d∕2−�)∕s).

�∼

K∑

k=1

�klogistic(�i, sk),

P(�;�,�, s)=

K∑

k=1

�k[�((�+d∕2−�k)∕sk)−�((�−d∕2−�k)∕sk)].
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APPENDIX B

RECONSTRUCTION FOR THE VARIED IMAGE SIZE WITH DEEP PRIOR MODEL
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