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Abstract. The data consistency for the physical forward model is crucial in
inverse problems, especially in MR imaging reconstruction. The standard way
is to unroll an iterative algorithm into a neural network with a forward model
embedded. The forward model always changes in clinical practice, so the learn-
ing component’s entanglement with the forward model makes the reconstruction
hard to generalize. The deep learning-based proximal gradient descent was pro-
posed and use a network as regularization term that is independent of the for-
ward model, which makes it more generalizable for different MR acquisition set-
tings. This one-time pre-trained regularization is applied to different MR acquisi-
tion settings and was compared to conventional �1 regularization showing ˜3 dB
improvement in the peak signal-to-noise ratio. We also demonstrated the flexibil-
ity of the proposed method in choosing different undersampling patterns.
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1 Introduction

Before employing deep learning in accelerated MRI reconstruction, conventional meth-
ods for parallel MR imaging are based on the numerical pseudo-inversion of ill-posed
MRI encoding matrix, which could be prone to reconstruction error at poor condition-
ing [4,6,7]. The encoding matrix comprises the k-space under-sampling scheme, coil
sensitivities, Fourier transform. The traditional reconstruction involves some gradient
descent methods for minimizing the cost function of the k-space fidelity and the regu-
larization term [6,9]. There is a tradeoff between the image artifact level and the under-
sampling rate as limited by the encoding capacity of coil sensitivities. Nevertheless, the
parallel imaging technique robustly provides the acceleration at factor 2–4 [4,7]. The
compressed sensing technique exploits the sparsity property of MR images in a spe-
cific transform domain, such as the wavelet domain, in combination with the incoherent
under-sampling in k-space, which enables even larger acceleration factor.

With the fast growth of machine learning, the supervised learning have been applied
to MRI reconstruction [1,8,11]. Those methods MRI encoding matrices were fully
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included in the neural network models. These models were trained with predetermined
encoding matrices and corresponding under-sampling artifacts. After training, imaging
configurations, including the k-space under-sampling schemes and coil sensitivities,
associated encoding matrices, must also be unchanged or changed only within pre-
determined sampling patterns, during the validation and application, which could be
cumbersome or to some extent impractical for the potential clinical use.

To tackle this design challenge, we unroll proximal gradient descent steps into a
network and call it Proximator-Net. Inspired by [3], the proposed method was adapted
from proximal gradient descent. This study’s objective was to develop a flexible and
practical deep learning-based MRI reconstruction method and implement and validate
the proposed method in an experimental setting regarding changeable k-space under-
sampling schemes.

2 Method - Proximal Network as a Regularization Term

The image reconstruction for MR k-space data acquired with different k-space trajec-
tories can be formulated as an inverse problem for the corresponding forward model.
We followed the MRI reconstruction problem formulation used in l1-ESPIRiT [9]. Let a
forward operatorA to map the MR image x to the sampled k-space data y. The operator
A consists of a Fourier transform operator F , coil sensitivity S, and a k-space sampling
mask P , i.e., A = PFS [9]. The well-known solution to the inverse problem can be
formulated as an optimization problem with a regularization term [9] as

x̄ = argmin
x

‖Ax − y‖22 + λφ(x), (1)

where φ(x) is a regularization term that introduces the prior knowledge, and λ the
regularization parameter. The proximal operator for φ(x) in the proposed approach,
proxφ (x), is defined as:

x̂ = proxφ,1/λ (v) := argmin
x

‖x − v‖22 + λφ(x) (2)

x̂ ∈ χ ∼ Pmodel ≈ Pdata (3)

where x̂ is the proximate value at v, χ is the sub-space that contains MR images (includ-
ing the ground truth), Pdata is the probability distribution of the observed MR images,
and Pmodel is learned the probability distribution. Taking the sparse constraint in com-
pressed sensing as an analogy, φ(x) is a �1-norm of coefficients from the wavelet trans-
form, the Equation (2) can be approximated by the shrinkage method (FISTA). Back to
the definition of the proximal operator, we treat Equation (2) as another optimization
problem solved iteratively by the proximal gradient descent method, which is expressed
as follows

g(t+1) = x(t) + α(t)(v − x(t)) (4a)

x(t+1) = Netφ(g(t+1)) (4b)

then, we unroll above iterative steps as a Proximator-Net shown in Fig. 1.
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Fig. 1. The unrolled proximate gradient descent as neural network, theNetφ are the red triangles
whose detailed structure is detailed in material.

At the iteration t, x(t+1) is supposed be closer to Pdata than x(t). In order to achieve
this, images corrupted by Gaussian noises are used as input. The corresponding noise-
free images are used as labels. The �2-loss between outputs and labels is used. To solve
Equation (3) and make the prediction close to the data distribution, the �2 regularization
of the gradient of output with respect to input is used, as proposed in [2]. Therefore the
final training loss is

E

[
‖rθ(x̃) − x‖22 + σ2

∣∣∣∣
∣∣∣∣∂rθ(x)

∂x

∣∣∣∣
∣∣∣∣
2

2

]
, (5)

where x̃ is the image perturbed by the Gaussian noise with σ and rθ(x) is the neu-
ral network parameterized by θ. Proximator-Net is recast as a neural network-based
proximal operator for the proposed regularization term, and the proposed approach for
reconstruction is

m(t) = x(t) + α(t)AH(y − Ax(t)) (6a)

x(t+1) = (1 − λ) · x(t) + λ · rθ(m(t)) (6b)

where λ is the parameter for the learned regularization term.

3 Experiments and Results

Dataset and Pre-processing: The dataset we used in this work is from Ref. [5]. Train-
ing images were reconstructed from 8 channels k-space data without undersampling.
Then, these image data-sets after coil combination were scaled to a magnitude range
of [−1, 1] and resized to an image size of 256×256. In the end, 900 images were used
for training, and 300 images were used for testing. We set the level of Gaussian noise
with σ = 0.03, μ = 0. The training was performed with Tensorflow on 4 GTX 2080Ti
GPUs and took about 2 h for 500 epochs. Real and imaginary parts of all 2D images
were separated into two channels when inputted into the neural network.
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Table 1. Comparison of PSNRs (in dB, mean ± standard deviation, N = 300) and SSIMs(%)
between �1-ESPIRiT and the proposed method.

l1 sruOTiRIPSE-

Sampling rate PSNR(dB) SSIM(%) PSNR(dB) SSIM(%)

1D mask
20% 31.63±5.34 68.28±14.48 35.12±3.41 91.34±5.32
30% 34.25±5.66 76.31±12.54 37.96±3.58 93.87±4.37

2D mask
20% 34.73±5.84 71.48±16.06 37.90±2.86 93.55±4.09
30% 37.55±5.34 80.95±11.84 40.12±2.98 95.09±3.41

Reconstruction and Comparisons: The proposed method in Eq. 6 was implemented
with Python. We performed l1-ESPIRIT (regularization parameter=0.005) reconstruc-
tion with the BART toolbox [9,10]. The coil sensitivity map was estimated from a
20×20 calibration region in the central k-space using ESPIRiT. To compare the images
reconstructed using different methods, we calculated the peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) with respect to ground truth.
Also, we validated the proposed method in different acquisition settings such as accel-
eration along one dimension, two dimensions, or radial acquisition. The metrics of dif-
ferent reconstructions were shown in Table 1. Generally, the result demonstrated that the
proposed method could restore the high-quality MRI with both high acceleration fac-
tor (i.e., 20% samples) and high PSNR (i.e., >35 dB). Figure 2 shows the comparison
between l1-ESPIRIT and the proposed method.

(a)

Mask Zero filled l1-ESPIRiT Ours Ground truth

PSNR, SSIM(%) 27.29, 69.81 27.07, 59.71 35.69, 91.79

(b)

PSNR, SSIM(%) 27.21, 76.96 27.68, 55.81 35.83, 91.17

(c)

PSNR, SSIM(%) 23.39, 39.93 33.84, 87.08 34.10, 89.50

Fig. 2. Row (a) shows the proposed method can remove the aliasing artifacts along phase encod-
ing direction in the case of using 30% k-space. Row (b) shows the proposed method can eliminate
the burring fog on the image in the case of using 20% k-space. Row (c) shows the two methods’
performances were close. With 40 radial spokes acquired in k-space.
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Smoothing Effect of the Learned Regularization Term: The smoothing effect of
the proposed regularization term was shown in Fig. 3. The parameter λ was tunable in
Equation (6b). When λ was set to be zero, it was an iterative parallel imaging (i.e.,
SENSE) reconstruction [7]. With the increase of λ, the artifacts and noises disappeared,
and also the image appeared more smooth with some details eclipsed. We noticed that
setting λ around 0.1 provided better PSNR and SSIM. We plotted SSIM and PSNR over
iterations to monitor the quality of reconstruction, using varied tuning parameter λ.

Fig. 3. (a) The curve of SSIM and PSNR over iterative steps. (b) Images reconstruction from 40
radial k-space spokes with different λ.

4 Discussion and Conclusion

In this study, a once pre-trained neural network - Proximator-Net - is used as a regu-
larization in iterative algorithm for MRI reconstruction and can be applied to different
reconstruction tasks, taking advantage of the separation of the learned information from
the fidelity enforcement. That makes it different to previous methods [1,8,11]. In this
initial experiment, we focused on demonstrating the utility of the proposed method in
classic compressed sensing and radial k-space acquisition, and we used the brain MRI
data to evaluate the method. Like conventional iterative reconstruction algorithms, k-
space fidelity in the proposed hybrid approach was enforced by the least-square term
and implemented outside the neural network, allowing the high flexibility to change
k-space under-sampling schemes and RF coil settings. For quantitative comparison, our
methods achieved 3dB higher PSNR in the tested acquisition settings compared with
l1-ESPIRiT.
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