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Purpose: To develop a deep-learning-based image reconstruction framework
for reproducible research in MRI.
Methods: The BART toolbox offers a rich set of implementations of calibra-
tion and reconstruction algorithms for parallel imaging and compressed sensing.
In this work, BART was extended by a nonlinear operator framework that
provides automatic differentiation to allow computation of gradients. Existing
MRI-specific operators of BART, such as the nonuniform fast Fourier transform,
are directly integrated into this framework and are complemented by common
building blocks used in neural networks. To evaluate the use of the framework
for advanced deep-learning-based reconstruction, two state-of-the-art unrolled
reconstruction networks, namely the Variational Network and MoDL, were
implemented.
Results: State-of-the-art deep image-reconstruction networks can be con-
structed and trained using BART’s gradient-based optimization algorithms. The
BART implementation achieves a similar performance in terms of training time
and reconstruction quality compared to the original implementations based on
TensorFlow.
Conclusion: By integrating nonlinear operators and neural networks into
BART, we provide a general framework for deep-learning-based reconstruction
in MRI.

K E Y W O R D S

automatic differentiation, deep learning, image reconstruction, inverse problems, MRI,
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1 INTRODUCTION

In the last decades, MRI has advanced substantially
in terms of acquisition speed and image quality. Paral-
lel imaging utilizes the signal of multiple receiver coils
for image reconstruction by combining the signals in

k-space1-3 or image space.4 Another step toward the cur-
rent state-of-the-art image reconstruction was the use
of compressed sensing for MRI.5,6 Advanced methods
now integrate compressed sensing and parallel imaging
by using sparsifying regularization terms when solving
the inverse problem for parallel imaging.6,7 These tech-
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niques admit a Bayesian interpretation where regulariza-
tion terms can be understood as the integration of prior
knowledge into the reconstruction.

In recent years, deep learning has become a major
research interest in image reconstruction with the goal
to improve upon the previously used hand-crafted regu-
larization terms by learning image properties from large
datasets. The public availability of deep learning frame-
works such as TensorFlow8 or PyTorch9 simplifies access
to deep learning methods for MRI researchers. Moreover,
public datasets from https://mridata.org10,11 and from the
fastMRI challenge12 provide a large amount of training
data and open the field of research to data scientists not
having access to MRI data.

Neural networks have been utilized in various ways
for MRI reconstruction. Some authors have proposed to
learn a direct mapping from the acquired k-space data to
the image domain.13 However, these methods usually lack
a data-consistency guarantee, that is, the output of the
reconstruction may not be consistent with the measured
k-space data. Others have used neural network to train reg-
ularizers which can be used for image reconstruction in
a subsequent step.14 In one class of such regularizers, a
neural network is trained to enhance an initial reconstruc-
tion. Afterwards, the 𝓁2 difference to this reconstruction
is used as regularizer.15,16 Another class of networks with
data consistency are networks that model an unrolled iter-
ative optimization algorithm.17-19 In each iteration of such
a network, the network part, usually a CNN or U-Net,
updates the current reconstruction and afterwards soft
data consistency is imposed by a gradient step or proximal
mapping. The resulting unrolled networks are then trained
as an end-to-end mapping from the k-space to the image
domain.

BART20 is an open-source framework providing imple-
mentations of various calibration methods and recon-
struction algorithms for parallel imaging and compressed
sensing. It consists of programming libraries and com-
mand line tools for easy but flexible access to the pro-
gramming libraries. BART is developed with the purpose
of facilitating reproducible research and has a focus on
backwards compatibility, while still offering rapid proto-
typing and testing of advanced reconstruction algorithm
with the goal of translating them into clinical recon-
struction pipelines. The high-level reconstruction algo-
rithms of BART are built around programming libraries
offering generic implementations of various iterative algo-
rithms as well as an efficient numerical backend. The
backend provides functions acting on multidimensional
arrays (or tensors) which support acceleration by multiple
threads or (multiple) graphical processing units (GPUs).
In this work, we extend BART with a complete frame-
work for nonlinear operators. The framework builds on

our previous work on nonlinear calibrationless parallel
imaging21 and physics-based reconstruction,22 and is now
extended with automatic differentiation, additional build-
ing blocks for neural networks, and new optimization
algorithms.23 In combination with the powerful numerical
backend, the nonlinear operator framework can then be
used to efficiently train neural networks. Moreover, non-
linear operators can be used to wrap around TensorFlow
graphs, allowing the integration of pretrained networks
into BART’s reconstruction algorithms.24 MRI reconstruc-
tion networks imposing data consistency require a large
amount of domain specific knowledge. By integrating neu-
ral networks into BART, we benefit from BART’s rich set of
MRI specific modules and algorithms which can be easily
reused for deep learning-based MRI reconstructions. Writ-
ten in C and only depending on a few external libraries, we
consider BART a solid basis for future research that inte-
grates classical image reconstruction with deep learning.

In the remainder of this article we first describe in
detail the implementation of our deep learning framework
and its integration into BART. There, we focus on the
numerical backend, the automatic differentiation, the iter-
ative training algorithms and the neural network frame-
work. Afterwards, we present our implementation of the
Variational Network (VarNet)17 and MoDL,18 and com-
pare their performance to the original implementations
based on TensorFlow.

2 METHODS

A neural network is a nonlinear function F mapping the
input data x and weights 𝜽 to an output y = F(x;𝜽). Train-
ing a neural network corresponds to fitting the neural
network to a training dataset by minimizing some suitable
loss L, that is,

𝜽
∗ = arg min

𝜽

[∑
i

L(yi,F(xi;𝜽))

]
. (1)

Usually, neural networks are constructed from small
building blocks such as fully connected layers, convo-
lutional layers or activation functions. Automatic dif-
ferentiation is used to compute the gradients of the
loss needed for gradient-based optimization algorithms
such as stochastic gradient descent or ADAM.25 Offer-
ing automatic differentiation and efficient implementa-
tions for the small building blocks are key features of
deep learning frameworks. In the first part of this section,
we describe the integration of programming libraries
used for deep learning in BART, before we describe our
implementations of VarNet and MoDL in the second
part.
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2.1 Libraries for deep learning in BART

The basic integration of libraries used for neural networks
in BART is depicted in Figure 1. The backend provide
access to optimized numerical functions. Based on the
backend, the nonlinear operator framework is used to con-
struct neural networks from small building blocks and pro-
vides automatic differentiation to compute gradients. The
nn-library then extends this nonlinear operator framework
by deep learning specific functions. Finally, new train-
ing algorithms for deep learning are integrated in BART’s
iterative framework.

2.1.1 Numerical backend

The numerical backend of BART is designed around
functions acting on multidimensional (md) arrays. An
md-array is described by its dimensions d ∈ NN , its rank
N and, optionally, its strides s ∈ ZN describing how an
element of the md-array is accessed in memory. The off-
set of an element at position p ∈ NN is given by o = p ⋅ s.
By default, BART assumes column-major ordering, that is,
the first dimension of the md-array is stored continuously
in memory corresponding to the strides si =

∏i−1
𝑗=0dj. By

manipulating the strides, different views on the memory
can be generated without copying data. The memory for
an md-array can be allocated on the CPU or on the GPU.
On supported GPUs, the GPU memory can be oversub-
scribed, that is, GPU memory is automatically swapped by
the driver to CPU memory.

2.1.2 Md-functions

Md-functions provide a consistent and flexible interface to
functions acting on md-arrays. They loop over all positions

defined by the dimensions and apply a scalar-valued ker-
nel on the elements accessed using the provided strides.
For example, md_fmac2 applies

for p ∈ {0, … ,d0 − 1} × · · · × {0, … ,dN−1 − 1} ∶
a[p ⋅ sa] ← a[p ⋅ sa] + b[p ⋅ sb] ⋅ c[p ⋅ sc] . (2)

By setting the strides correspondingly, many functions
such as convolutions, matrix-vector multiplications or
a dot product can be derived. For example, if sa = 0,
the dot product of b and c is accumulated in a[0]. If
the memory of an md-array is located on the GPU, the
computation of a md-function is automatically executed
on the GPU. The loops of the md-functions are gener-
ically optimized in the backend. Further, strides corre-
sponding to specific operations such as matrix-matrix
multiplication or convolution are detected, and spe-
cialized code—possibly from external libraries such as
cuBLAS or cuDNN—is executed. Thus, md-functions pro-
vide a generic but still efficient interface to the numeric
backend.

2.1.3 Bitwise reproducibility

Floating point arithmetic is not associative making mul-
tithreaded programs nondeterministic if the order of the
operations depends on the runtime of individual threads.
BART’s GPU kernels and the generic parallelization do
not introduce any nondeterministic operations except for
the gridding code of the nuFFT. cuBLAS and cuDNN
are deterministic across runs when executed on GPUs
with the same architecture except for some specific func-
tions. By default, BART makes only use of these deter-
ministic functions, however, the compile-time option
NON_DETERMINISTIC = 1 can be used to allow BART

F I G U R E 1 Integration of deep
learning modules into BART. The numerical
backend (red) is accessed by md-functions
which invoke BART’s internal generically
optimized functions or external libraries
offering highly optimized code for special
functions. Differentiable neural networks
are implemented as nonlinear operators
(blue). The nn-library (green) extends the
nonlinear operator framework by deep
learning specific features. The training
algorithms are integrated in BART’s
iterative framework (violet). Iter6 provides a
new interface for batched gradient-based
training algorithms.
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BLUMENTHAL et al. 681

to select nondeterministic algorithms to improve compu-
tational performance.

2.1.4 Automatic differentiation and the
nonlinear operator framework

Usually, neural networks are trained by gradient-based
methods. The vanilla version of a gradient descent
algorithm optimizes Eq. (1) by the iteration 𝜽i+1 = 𝜽i −
𝜂∇𝜽

(∑
i L(yi,F(xi;𝜽)

)
, where 𝜂 is the learning rate and∇𝜽

denotes the gradient of the loss with respect to the weights
𝜽. Automatic differentiation, as described below, allows to
construct an operator computing

∑
i L(yi,F(xi;𝜽) and to

compute its derivative, that is, gradient, with respect to the
weights.

We first describe the automatic differentiation frame-
work on an abstract level for real-valued operators, before
we describe the extension to complex variables and the
implementation details in subsequent paragraphs. A non-
linear operator (nlop) F consists of the forward operator
F itself and its (Fréchet)-derivative DF|x - a linear opera-
tor (linop) applying the Jacobian matrix J|x evaluated at
some position x on its input, that is,

F ∶ R
N → R

M DF|x ∶ R
N → R

M Ji𝑗 =
𝜕Fi

𝜕x
𝑗

x → y = F(x) dx → dy = J|xdx. (3)

Usually, the Jacobian J is not stored explicitly, instead, the
derivative DF|x or its transposed DFT|x can be applied on
test inputs. By applying the derivative on a vector êk con-
taining zeros and a one at index k, the kth column of the

Jacobian is computed. Correspondingly, the kth row of J is
computed by applying the transposed derivative on êk. In
the special case F ∶ RN → R mapping to a scalar, the Jaco-
bian reduces to a 1 × N-matrix containing the gradient of
F which can be computed by applying DF|Tx on the scalar
one, that is,

∇F =
(
𝜕F1
𝜕x1

… 𝜕F1
𝜕xN

)T
= JT = DFT

(
1
)
. (4)

Gradients are usually computed by the transposed deriva-
tive since this only requires one application of DF|Tx
instead of N applications of DF|x to compute each column
of J independently. As depicted in Figure 2A, nlops can
have multiple inputs and outputs and there is a derivative
for each combination of input and output. The deriva-
tives are always evaluated at the inputs of the last call of
F and there is a shared data structure to communicate
this information. For example, the multiplication operator
F(x1, x2) = x1x2 stores x2 (and x1) needed by the derivative
Dx1 F|x1,x2 ∶ dx1 → x2dx1.

Composing operators
The crucial part of automatic differentiation is the possi-
bility to chainnlops and compute the chained derivatives.
Figure 2B shows the chain H = G◦F with its derivative
DH|x = DG|F(x)◦DF|x. As G is applied on F(x), the deriva-
tive DG is automatically evaluated at F(x). To compute the
transposed DH|Tx = DF|Tx◦DG|TF(x), the DFT and DGT are
applied in reverse order, hence the name backpropagation.
Similar to the chain, BART provides a set of functions for
composingnlops with multiple inputs and outputs. These
functions can be used to combine two nlops to one, to
link an output of an nlop into one of its inputs, and to

F I G U R E 2 Basic concepts of
nlops. (A) An atomic nlop
exemplary with two complex-valued
inputs (x1, x2) and two outputs
(y1 = F1(x1, x2), y2 = F2(x1, x2))
consisting of the forward operator F
and its derivatives DiFo modeled by
linops. F and DiFo communicate via
a shared data structure. (B) Chaining
of two nlops F and G. Since G is
applied on the output F(x), its
derivative DG|F(x) is automatically
evaluated at F(x). (C) The two nlops F
and G are combined to form H, whose
output 1 is linked into input 1 to form
I, whose inputs 0 and 1 are duplicated
to construct J(x1, x2) = F(x1,G(x1, x2)).
The derivatives of the final operator are
constructed automatically (not shown).
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682 BLUMENTHAL et al.

duplicate one of its inputs into another one. The action
of these functions is presented in Figure 2C, where we
demonstrate how two nlops F and G can be used to con-
struct an nlop computing J(x1, x2) = F(x1,G(x1, x2)). The
resulting nlops hold references to the base nlops to call
them, and the derivatives are constructed automatically.
Since combine, duplicate and link can be nested, generic
compositions of nlops are possible.

Complex numbers
nlops in BART work with complex numbers, that is, sin-
gle precision complex floats. The automatic differentiation
framework is extended to complex numbers by identify-
ing C ∼ R2. For example, a univariate complex mapping
F ∶ x → y = F(x) is represented by

F ∶

(
xr

xi

)
→

(
yr

yi

)
DF ∶

(
dxr

dxi

)
→

⎛⎜⎜⎝
𝜕yr
𝜕xr

𝜕yr
𝜕xi

𝜕yi
𝜕xr

𝜕yi
𝜕xi

⎞⎟⎟⎠
(

dxr

dxi

)
.

(5)
This approach is equivalent to the so-called Wirtinger26 or
CR-calculus27 which introduces the complex derivatives
𝜕y
𝜕x

and 𝜕y
𝜕x

to reformulate DF as

DF ∶ dx → 𝜕y
𝜕x

dx + 𝜕y
𝜕x

dx with 𝜕y
𝜕x
= 1

2

(
𝜕y
𝜕xr
− i 𝜕y

𝜕xi

)
DFT∶ dy → 𝜕y

𝜕x
dy + 𝜕y

𝜕x
dy 𝜕y

𝜕x
= 1

2

(
𝜕y
𝜕xr
+ i 𝜕y

𝜕xi

)
.

(6)
If F is holomorphic, 𝜕y

𝜕x
= 0 holds, such that DF corre-

sponds to the multiplication with the complex derivative
𝜕y
𝜕x

and DFT to the multiplication with its complex con-
jugate. Similarly, in the multivariate case F ∶ CN → CM ,
the derivative DF ∶ CN → CM is linear with respect to C

iff F is holomorphic. If DF ∶ CN → CM is not linear with
respect to C, we still call the transposed of the real-valued
derivative DFT ∶ R2M → R2N the adjoint derivative DFH ∶
CM → CN .

The loss of a neural network in Eq. (1) must be real
as there is no ordering on C. In the picture of real-valued
derivatives, training a network with complex-valued
weights is equivalent to optimize the real and imagi-
nary part of the weights independently. In the picture of
Wirtinger calculus, we consider a mapping F ∶ CN → R.
Since the output is real, it holds 𝜕F

𝜕x
𝑗

= 𝜕F
𝜕x

𝑗

such that

DFH(1) = 2
(
𝜕F
𝜕x1

… 𝜕F
𝜕xN

)T

=
(
𝜕Fr
𝜕x1r

+ i 𝜕Fr
𝜕x1i

… 𝜕Fr
𝜕xNr

+ i 𝜕Fr
𝜕xNi

)T
. (7)

We stress the analogy to Eq. (4), that is, the real part of
DFH(1) is the gradient of F with respect to the real part of x

and the imaginary part of DFH(1) is the gradient of F with
respect to the imaginary part of x.

Implementation of operators
For interested programmers, we describe the
C-implementation of operators, linops, and nlops
in the nonlinear operator framework. operators are
the basic structures of the framework. An operator
holds an apply-function which is called when the oper-
ator is applied and a generic data structure which is
passed to this function together with pointers to the input
and output md-arrays (Figure 3A). An example for an
operator is the chain-operator (Figure 3D ), whose
data structure holds references to the chained operators
and whose apply function calls them one after another.
A linop A ∶ CN → CM models a linear operator by
holding references to operators computing A and its
adjoint AH . For atomic, i.e. non-composed, linops, the
operators have access to a shared data structure of type
linop_data_s (Figure 3B). For example, a linop per-
forming a matrix multiplication stores the matrix in this
structure such that it can be accessed by the forward and
adjoint operators. linops are chained by creating a
new linop referring to the chained forward and adjoint
operators. An nlop consists of an operator model-
ing the nonlinear forward operator and linops modeling
the derivatives. For atomic nlops, the linops and the
forward operator, have access to a shared data struc-
ture of type nlop_data_s (Figure 3C) to store the data
necessary to evaluate the derivatives at the last input of
the forward operator as described above. To implement a
completely new nlop, the programmer needs to define
the data structure nlop_data_s and functions to be
called when the nlop or its (adjoint) derivative is applied.
Other references and data structures are created automat-
ically. All shared data structures use reference counting
for automatic memory management (garbage collection).
As nlops are implemented based on md-functions, they
are automatically executed on the GPU if the inputs and
outputs are located on the GPU.

Functional container
Generally, the execution properties of an nlop can
be modified by encapsulating it in a container which
itself is an nlop. We use such a container to imple-
ment checkpointing to reduce memory use. When the
checkpointing-container is applied, the inputs are stored
and the innernlop is applied without saving data for com-
puting its derivatives. When the derivatives are needed,
the inner nlop is applied again using the inputs stored
in the container and the data needed for the derivatives is
recomputed. Thus, checkpointing can reduce the memory
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BLUMENTHAL et al. 683

(A) (B)

(C)

(D)

F I G U R E 3 Schematic description of operators, linops and nlops as data structures in BART. Solid lines mean “points to,” dotted
lines “points to indirectly” and dashed lines “calls.” Colons indicate specific realizations of a data structure, that is, operator_chain_s is
the operator_data_s structure used for chaining operators. Objects required to create the respective structures are marked in red. Other
structures and references are created automatically. (A) An operator holds a reference to a data structure and a function which is called
when the operator is applied. (B) A linop holds references to multiple operators such as the forward and adjoint operator which share
a common data structure. (C) An nlop holds references to the nonlinear forward operator and linops modeling the derivatives. The
forward operator and linops have access to a shared data structure nlop_data_s. (D) The data structure of a chain-operator holds
references to the chained operators which are applied sequentially, when the chain-operator is applied.

consumption at the price of multiple applications of the
nlop.

Moreover, a functional container can be used to assign
an nlop to a specific GPU. When such an nlop or its
derivative is called, the CUDA context is switched to the
selected GPU and all input data of the nlop are copied to
the GPU. Afterward the inner nlop is called which uses
the selected GPU for all its computation and memory allo-
cations. By calling nlops assigned to different GPUs from
different threads in parallel, we can efficiently distribute
the memory and computation of the nlops to multiple
GPUs (cf. Supporting Information Figure S2).

2.1.5 Neural network library

The neural network (nn)-library contains our
complex-valued implementations of typical operators
used to construct neural networks, that is,

• fully connected (dense) layers

• (transposed / adjoint) convolutional layers
• dropout layers, max-pooling layers, batch normaliza-

tion layer28

• activation layers: complex cardioid,29 CReLU,30,31 sig-
moid and softmax

• loss functions: mean squared error (MSE), mean
absolute difference, structural similarity index mea-
sure (SSIM),32 generalized dice loss,33 and categorical
cross-entropy.

The corresponding nlops are implemented generi-
cally such that they act on N-dimensional complex-valued
md-arrays and support operations (convolution, normal-
ization, pooling) along arbitrary dimensions. However,
currently convolutions are only backed by optimized GPU
code for up to three dimensions. Moreover, the nn-library
contains another wrapper for nlops to index the argu-
ments (inputs and outputs) ofnlops by meaningful names
instead of numeric indices. The arguments are annotated
by a type defining how the optimization algorithm treats
this argument (weights, data, moving statistics of batch
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684 BLUMENTHAL et al.

normalization) and inputs corresponding to weights can
be attached with an initializer and proximal operators for
regularization.

Integration of TensorFlow graphs
The nlop framework also serves as a generic wrapper
for computation graphs exported from other deep learning
frameworks. As a proof of concept, we have implemented
a wrapper for TensorFlow graphs based on the TensorFlow
C API1. A pretrained neural network based on TensorFlow
can be exported to a graph file which is imported by BART
to construct an nlop. When this nlop is applied, the
forward-pass of the TensorFlow graph is executed, while
TensorFlow’s gradients are used to compute the adjoint
derivative of the nlop. The forward derivative for the
TensorFlow wrapper is not implemented.

2.1.6 Iterative training algorithms

Training a neural network corresponds to minimizing the
loss

∑
i L(yi,F(xi;𝜽)) with respect to the weights 𝜽 (cf. Eq.

(1)). Having constructed annlop representing F, we chain
its output into another nlop L to generate a loss-nlop.
This loss-nlop has two types of inputs, those correspond-
ing to weights 𝜽 and those corresponding to data x, y. The
training dataset xi, yi is split into mini-batches and in each
iteration the weights 𝜽 are updated based on the gradient
with respect to these weights. For training neural net-
works, we have integrated incremental gradient methods
such as stochastic gradient descent, Adam,25 and iPALM34

into BART’s library for iterative algorithms.

2.2 Applications and implemented
networks

To demonstrate practicability of our framework, we have
implemented and trained VarNet17 and MoDL.18 Both
networks are motivated by unrolling an optimization
algorithm solving the inverse problem

x∗ = arg min
x

||Ax − y||2 + R(x). (8)

Here, A =  is the linear SENSE operator composed
of the multiplication with the oil sensitivity maps, the
ourier transform, and the projection to the sampling
attern. x is the MR image to be reconstructed and y is
the measured k-space data. R(x) is a regularization term
imposing prior knowledge on the reconstructed image x.

1https://www.tensorflow.org/install/lang_c

We first describe the structure of both networks and
our respective implementations. Afterwards, we describe
how the TensorFlow wrapper can be used to integrate
an externally trained regularizer R(x) for reconstruction
with BART. Scripts to reproduce training and applica-
tion of the networks are available at https://github.com/
mrirecon/deep-deep-learning-with-bart. To provide inter-
ested developers a starting point to implement neural
networks in BART, we have implemented a toy network
to classify handwritten digits of the MNIST35 database.
The network can be found in the BART source code at
src/mnist.c and scripts to prepare the MNIST database
are available in the script repository.

2.2.1 Variational network

VarNet is motivated by solving Eq. (8) using an unrolled
gradient descent algorithm that includes a trained regular-
izer R. The network is initialized with the adjoint recon-
struction x0 = AHy and updates the reconstruction xt by

xt+1 = xt −
Nk∑
i=1
(Kt

i )
TΦt′

i
(

Kt
i xt) − 𝜆t (AHAxt − AHy

)
0 ≤ t ≤ T − 1. (9)

Here, the network block
∑Nk

i=1(K
t
i )

TΦt′
i
(

Kt
i xt) corresponds

to the gradient of a regularizer Rt(x) =
∑Nk

i=1Φ
t
i(K

t
i x), where

K is a convolution with Nk filters and Φ′ is the derivative
of a trainable activation function. The imaginary part of
the convolved images Kt

i x is discarded to be consistent
with the original implementation of VarNet. The last term
corresponds to a gradient step of the data-consistency
term ||Ax − y||22 with trained step size 𝜆

t. The BART
implementation of VarNet can be trained and applied
with the reconet command of the BART toolbox, that is
(Listing 1),

$ b a r t r e c o n e t −−network=v a r n e t −− t r a i n
<kspace> < c o i l s> <weights> < r e f e r e n c e>
$ b a r t r e c o n e t −−network=v a r n e t −−apply
<kspace> < c o i l s> <weights> <output>

Listing 1

<kspace>, <coils>, and <reference> are input
files holding multidimensional arrays as training data or
for inference. The data layout follows the BART conven-
tion and stacks independent datasets/volumes along the
batch dimension 15. An undersampling pattern can be
provided to subsample the k-space, otherwise the pattern
is estimated from the k-space data. <weights> is a file
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BLUMENTHAL et al. 685

holding the network weights 𝜽 which are an output of
the training command and an input for the reconstruc-
tion/apply command. The network block is implemented
to first reshape/transpose the current reconstruction xt to
the NDHWC data layout, where all BART dimensions not
corresponding to the 3D-spatial coordinates (DHW) or the
batch dimension (N) are interpreted as channel dimen-
sions (C). In the second step, the network block is applied,
and, finally, the result is reshaped/transposed back to the
original layout. Further options, such as network parame-
ters, training losses, initializations for the weights, or the
training algorithm can be configured using command line
options. The default hyperparameter are based on the Ten-
sorFlow implementation2, that is, T = 10 iterations, Nk =
24 11 × 11-convolution filter and Nw = 31 Gaussian radial
basis functions to construct the activation Φ′. This results
in 65 530 real-valued trainable parameters. iPALM is used
as training algorithm. The –normalize option can be
used to scale the data such that 1 = max ||x0||. As our imple-
mentation is equivalent to the original one, weights trained
with TensorFlow can be exported for inference with BART.

2.2.2 MoDL

The MoDL18 network is another unrolled network initial-
ized with x0 = AHy. A residual network W denoises the
current reconstruction and data-consistency is imposed by
a proximal mapping. The iterations read

xt+1 = argmin
x

[||Ax − y||2 + 𝜆||x −W (xt)||2]
=
(

AHA + 𝜆�
)−1

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟



(
AHy + 𝜆W (xt)

)
0 ≤ t ≤ T − 1.

(10)

The residual network W consists of L convolutional lay-
ers with F filters followed by batch normalization layers
and ReLU activation functions. The reconet command
with the –network=modl option is used to train MoDL.
By default, the Adam algorithm and the hyperparame-
ter from the TensorFlow implementation3 are used, that
is, the network is unrolled for T = 10 unrolled iterations
with shared weights and each residual block contains
L = 5 convolutional layers with Fc = 32 complex-valued
filters (instead of Fr = 64 real-valued in the Tensor-
Flow implementation). Thus, our implementation has
28 364 complex-valued (= 56 728 real-valued) trainable
parameters in contrast to 112 001 real-valued parameters

2https://github.com/VLOGroup/mri-variationalnetwork, Commit:
4b6855f
3https://github.com/hkaggarwal/modl, Commit: 428ef84

in the Tensor-Flow implementation. To compute (x),
we have implemented a generic inversion module for
positive-definite self-adjoint linear operators S

𝜆
∶ CN →

CN parametrized with parameters 𝜆 ∈ CM . Given annlop
 that has 𝜆 as second input and applies the parametrized
linear operator S

𝜆
to its first input, we construct the

nlop −1 applying the inverse S−1
𝜆

. These nlops are
defined by

 ∶ C
N ×C

M → C
N

−1 ∶ C

N ×C
M → C

N

(x, 𝜆) → y = S
𝜆
x (y, 𝜆) → x = S−1

𝜆

y . (11)

Note that the derivatives of −1 can be expressed in terms
of  and its derivatives, that is,

Dy
−1|y,𝜆 ∶ dy → dx = S−1

𝜆

dy
D
𝜆

−1|y,𝜆 ∶ d𝜆 → dx = −S−1

𝜆

◦D
𝜆
|−1(y,𝜆),𝜆d𝜆 . (12)

As proposed by Aggarwal et al.18 we use the conjugate
gradient algorithm to apply S−1

𝜆

.

2.2.3 Extensions to the SENSE-model

BART’s implementation of the SENSE model is generic
in the sense that it can handle multiple sets of coil sen-
sitivity maps (soft-SENSE36) and supports non-Cartesian
sampling patterns. The soft-SENSE model is suitable if
the object exceeds the FOV since one set of coil sen-
sitivity maps can not explain infolding artifacts.36 In
the context of deep-learning, the soft-SENSE model has
been used recently.37-39 VarNet and MoDL only update
the image corresponding to the first set of coil sen-
sitivity maps in the network block. We use the MSE
loss on the coil images since the coil images serve as
a reference independent of the estimated coil sensitivity
maps.

Reconstruction networks for non-Cartesian sampling
trajectories have been investigated recently.37,40-42 BART
implements the nonuniform (nu)FFT as a linop which
is integrated in the SENSE model of VarNet and MoDL.
To save expensive gridding steps of the nuFFT, we pre-
compute the adjoint reconstruction AHy and the point
spread function (PSF) of the non-Cartesian sampling pat-
tern  for the whole dataset. The joint forward-backward
nuFFT H


H
 is implemented by the convolution

with the PSF (Toeplitz trick),43,44 which significantly
speeds up computations on the GPU.45,46 We initialize
the non-Cartesian networks with a SENSE reconstruction
x0 = AHy. For MoDL, the number of CG-iterations in
each data-consistency block has been increased from 10
to 30, while the number of unrolled iterations has been
reduced to T = 5.
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686 BLUMENTHAL et al.

2.2.4 Image reconstruction using a learned
prior

An alternative approach of using neural networks for
MRI reconstruction is learning prior knowledge about the
image distribution by learning a regularizer R(x) inde-
pendently of the reconstruction. For reconstruction, the
learned regularizer is inserted into Eq. (8). One approach
to learn a regularizer is based on deep Bayesian estima-
tion.14 The resulting regularizer is given by

R(x) = −𝜆 log p(x;Net(x,𝜽∗)). (13)

Here, Net(x,𝜽∗) denotes the PixelCNN++47 which is
trained to predict the conditioned distribution parameters
of the mixture of logistic distributions that are used to
model the image distribution. Inserting the regularizer R
defined in Eq. (13) into the optimization problem Eq. (8)
corresponds to a maximum a posteriori estimation for the
reconstructed image. For more details, we refer to the
original publication.14

For reconstruction, the trained TensorFlow graph com-
puting R(x) is exported and loaded into BART using the
TensorFlow wrapper described above. The resulting nlop
is used to construct the corresponding proximal operator

proxR(v) = argmin
x

1
2
||x − v||2 + R(x) . (14)

The proximal operator is computed by the gradient descent
algorithm using automatic differentiation to compute ∇R.
The proximal operator can be plugged into any of BART’s
proximal operator based iterative optimization algorithms
using the pics command, that is (Listing 2),

$ b a r t p i c s −R TF : { model_path } : lambda
<kspace> < c o i l s> <output>

Listing 2

3 RESULTS

3.1 Reconstructions with BART

We have trained VarNet and MoDL on the datasets pro-
vided with the respective publications using the BART and
TensorFlow implementations to compare the reconstruc-
tion quality. VarNet was trained for 30 epochs algorithm
with a batch size Nb = 10 on 300 randomly ordered slices
of 15 subjects from the coronal_pd_fs directory, while
20 slices of the remaining five subjects were used for eval-
uation. The 15-coil fully sampled k-space data was retro-
spectively subsampled (4-fold regular undersampling, 28
auto calibration lines). MoDL was trained with batch size

Nb = 10 in a two-step-approach, that is, the weights were
initialized for 100 epochs using T = 1 unrolled iteration
and afterwards the network was trained for 50 epochs with
T = 10. The brain dataset of MoDL consists of 5 subjects
acquired with a 12 channel head coil. 90 slices of the first 4
subjects (360 in total) were used for training and 100 slices
of the remaining subject for testing. Subsampled k-space
data was generated from the fully sampled images by mul-
tiplying them with provided coil sensitivity maps, Fourier
transform, subsampling (variable density with accelera-
tion 6, no auto-calibration region) and addition of Gaus-
sian noise with SD 𝜎 = 0.001. This procedure is used in the
TensorFlow implementation to produce training data. We
only used normalization as described above for the knee
data of VarNet. We show example reconstructions based on
the respective networks and implementations in Figure 4.
Both implementations of the respective networks perform
quite similar and better than the classical 𝓁1-Wavelet reg-
ularized reconstruction. To support this statement quanti-
tatively, we computed the PSNR and SSIM for each slice
in the evaluation dataset and visualize the results in the
boxplots in Figure 4. Moreover, we compare in Supporting
Information Figure S1 the mean PSNR and SSIM of the
VarNet evaluation dataset computed after each training
epoch.

To demonstrate the benefits of the soft-SENSE model
in the case that the object exceeds the FOV, we simulated
k-space data with a reduced FOV from the fully sam-
pled knee dataset and trained VarNet and MoDL on this
dataset. ESPIRiT36 was used to estimate either one or two
sets of coil sensitivity maps from the simulated k-space.
Respective example reconstructions and quantitative met-
rics computed on the evaluation dataset are presented in
Figure 5. Reconstructions using two sets of coil sensitivity
maps show less aliasing artifacts and are superior in terms
of SSIM and PSNR.

Further, we used the knee dataset to simulate
non-Cartesian k-space data (radial trajectory with 44
spokes) and trained the network on this simulated data. In
Figure 6, we present an example reconstruction using the
non-Cartesian versions of VarNet and MoDL. The learned
methods improve the image quality compared to the
classical 𝓁1-Wavelet regularized reconstruction slightly.

3.2 Computational performance

We compared the BART and the TensorFlow4 imple-
mentations of MoDL and VarNet in terms of training

4VarNet: https://github.com/VLOGroup/mri-variationalnetwork,
Commit: 653630b; MoDL: https://github.com/hkaggarwal/modl,
Commit: 428ef84.
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BLUMENTHAL et al. 687

F I G U R E 4 Comparison of the TensorFlow and BART implementation of VarNet (A) and MoDL (B). For reference, we also show the
results of the adjoint reconstruction AHy and an 𝓁1-Wavelet regularized SENSE reconstruction computed using the BART pics tool. Boxplots
are based on PSNR and SSIM of the respective evaluation datasets using the coil sensitivities as foreground mask. This mask explains the
discrepancy to the SSIM values given at the reconstructed images.

time, inference time, and memory consumption on four
different Nvidia GPUs, that is, A100-SXM-80GB, Tesla
V100-SXM2-32G, TITAN Xp (12 GB) and GTX TITAN X
(12 GB). We use TensorFlow 1.15 maintained by NVIDIA
to support current GPUs5 with cuBLAS 11.7, and cuFFT
10.6, cuDNN 8.3. For VarNet we also experimented with
the implementation6 based on TensorFlow-ICG7. The
training time of BART was measured in two settings: once
with CUDA 11.2, cuDNN 8.3 and the use of nondetermin-
istic algorithm and once without cuDNN and only using
deterministic algorithms. All network parameters were
chosen as described before except the number of unrolled
iterations of MoDL which was reduced to T = 5 to fit in
12 GB GPU memory. For MoDL, only the time for the
second part of the two-step training has been measured.
The results are presented in Figure 7. In general, the

5https://github.com/NVIDIA/tensorflow
6https://github.com/VLOGroup/mri-variationalnetwork, Commit:
4b6855f
7https://github.com/VLOGroup/tensorflow-icg; CUDA 8.0; cuDNN 7.0

computation time of the BART and TensorFlow
implementations are comparable, however, TensorFlow
performs better on the older GeForce GTX TITAN X GPU.
BART’s implementation of VarNet is distributed to two
GPUs by stacking two versions of the network each asso-
ciated to the respective GPU along the batch dimension
(cf. Supporting Information Figure S2). The overhead
due to multi-GPU synchronization is minimal resulting
in a training time reduced by 47%–49% depending on the
GPU. Batch-normalization used by MoDL requires inter-
batch synchronization such that only the data-consistency
blocks are distributed to multiple GPUs reducing the ben-
efit of multiple GPUs. The inference time was measured
on the respective evaluation datasets. To reduce the bias
due to different preprocessing procedures on the CPU in
the respective implementations, we also measured the
total execution time of GPU kernels using NVIDIA Nsight
Systems. In general, the BART implementations achieve
similar performance to the TensorFlow implementations.

We measured the peak GPU memory allocation during
training and inference for the respective implementations
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688 BLUMENTHAL et al.

F I G U R E 5 Comparison of two example reconstructions with MoDL and variational network (VarNet) using one set of coil sensitivity
maps (usual SENSE) and two sets of coil sensitivity maps (soft-SENSE). The aliased k-space data is simulated by first zero-padding the
fully-sampled coil-images and afterwards subsampling the k-space by a factor of two before applying the usual sampling pattern (every fourth
line and 28 auto calibration lines). The usage of two sets of coil sensitivity maps reduce undersampling artifacts (cf. arrows) and improves the
PSNR and SSIM for VarNet and MoDL.

F I G U R E 6 Comparison of MoDL and variational network (VarNet) for non-Cartesian reconstructions using a radial trajectory with 44
spokes. The fully sampled k-space data from the reference knee image in Figure 4 was interpolated on the trajectory to simulate the
non-Cartesian k-space data. For reference, we show the results of the adjoint reconstruction AHy with density compensation, a CG-SENSE
and 𝓁1-Wavelet regularized reconstruction computed using the BART pics tool.

of MoDL and VarNet and present the results in Table 1.
Since allocating GPU memory is expensive, both, BART
and TensorFlow, use a memory cache to reuse allocated
memory. While BART allocates memory on demand, Ten-
sorFlow pre-allocates larger memory blocks such that the
peak memory allocation exceeds the actually required
memory. Thus, we also state the memory allocation before
reaching the peak allocation which serves as a loose lower
bound. The memory needed for training and inference is
overall similar across implementations. The TensorFlow
implementation of VarNet computes the gradient steps in
the data-consistency block without removing frequency

oversampling which is a possible reason for the higher
memory requirement. Results on the TITAN Xp are based
on an old version of BART since the GPU broke during the
revision.

3.3 Image reconstruction using a
learned prior

In Figure 8, we present the reconstruction based on a
learned prior. The prior was retrained on the brain dataset
described in Reference 14. Data for reconstruction was
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BLUMENTHAL et al. 689

F I G U R E 7 Comparison of training (left)
and inference (right) time for MoDL and
VarNet on different GPUs (full names in text).
We observed slow host to device copies on the
TITAN Xp which might affect the TensorFlow
result of MoDL on this GPU. In general, the
BART and TensorFlow implementations
provide similar performance.

T A B L E 1 GPU-Memory (in GB) used by BART and TensorFlow to train/infer MoDL and variational network (VarNet) on different
GPUs (full names in text)

Training Inference

MoDL BART TensorFlow BART TensorFlow

A100 8.9 (9.6) 10.2 (5.8) 1.8 (2.2) 1.9 (1.4)

V100 8.6 (8.9) 9.6 (2.9) 1.6 (1.7) 1.4 (1.1)

TITAN Xp 11.8 (12.6) 9.2 (4.9) 1.7 (1.8) 4.0 (0.7)

TITAN X 8.3 (9.0) 9.2 (4.9) 1.1 (1.1) 4.0 (0.6)

VarNet BART TensorFlow BART TensorFlow

A100 6.6 (6.8) 18.7 (10.2) 1.6 (2.0) 1.9 (1.7)

V100 6.2 (6.3) 18.2 (9.6) 1.3 (1.6) 1.4 (1.1)

TITAN Xp 6.3 (6.3) 12.4 (9.2) 1.2 (1.4) 1.1 (0.8)

TITAN X 5.8 (5.8) 12.4 (9.2) 1.0 (1.0) 1.0 (0.5)

Note: In parentheses, we provide for BART the memory if cuDNN is used and for TensorFlow the memory used before the peak-allocation is reached, which
serves as a loose lower bound.

F I G U R E 8 Brain images reconstructed
from 60 radial k-space spokes via a
coil-combined inverse nuFFT, an 𝓁1-Wavelet
regularized PICS reconstructions, and a PICS
reconstruction using a learned log-likelihood
prior (left to right)

acquired on a Siemens Skyra 3T scanner (Siemens Health-
care GmbH). For reconstruction, we used 60 spokes
of a radial Flash sequence (TR= 770 ms, TE= 16ms,
FA= 18◦). The coil sensitivity maps were estimated
using ESPIRiT and gradient delays were corrected
based on RING.48 We compare a reconstruction

using the inverse nuFFT, an 𝓁1-Wavelet regularized
PICS reconstruction and a reconstruction using the
learned log-likelihood prior (cf. Eq. (13)). The learned
log-likelihood prior results in an improved reconstruc-
tion compared to the classical 𝓁1-Wavelet regularized
reconstruction.
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690 BLUMENTHAL et al.

4 DISCUSSION

In this work, we describe a framework for deep learning
that was included in the BART toolbox. The framework is
based on an extension of the existing nonlinear operator
framework in BART that provides automatic differentia-
tion and directly integrates BART’s existing MRI-specific
operators such as multidimensional FFT, nuFFT, and
SENSE operators and complements it with many operators
commonly used to construct neural networks. A sophis-
ticated framework for constructing complex neural net-
works was added. We also implemented various optimiz-
ing techniques and achieve computational performance
similar to other deep-learning frameworks. Distributing
computation to multiple GPUs can reduce computation
time further. Finally, we added new optimization algo-
rithms such as stochastic gradient descent, iPALM, and
Adam, which are popular for training neural networks.
To demonstrate practicality of the framework, we imple-
mented and trained the VarNet and MoDL in BART. Our
implementation achieves similar performance in terms of
reconstruction quality and training time compared to the
original implementations based on TensorFlow. Further,
BART’s generic formulation of the SENSE model including
the non-Cartesian and soft-SENSE formulation together
with a flexible parametrization of the training procedure
in terms of training algorithm, loss functions, and training
target (coil combined reconstruction, RSS reconstruction
or coil images) enables direct use of VarNet and MoDL for
many applications.

State-of-the-art deep-learning-based MR image recon-
struction algorithms combine two fields of research, that
is, the field of machine learning and the field of classi-
cal MRI reconstruction methods. For both fields, mature
software frameworks/toolboxes already exist. Hence, var-
ious approaches exist to develop algorithms combining
both fields, the two extreme cases are (1) MRI-specific
operations can be re-implemented in deep-learning frame-
works and (2) neural networks can be re-implemented in
MRI frameworks. Both approaches have different advan-
tages and disadvantages. Deep learning frameworks such
as TensorFlow or PyTorch are driven by large communi-
ties and recent developments in the field of deep learning
are quickly integrated. Moreover, many tutorials based
on standard frameworks exist and simple scripting based
on Python reduces the barrier to entry. The frameworks
are designed for large-scale datasets and support most
recent hardware as well as direct integration into cloud
solutions of various providers. However, all these fea-
tures come at a price: Current deep learning libraries
use many external libraries with complex dependencies.
Updating some libraries in the backend or the framework
itself might produce version conflicts which are hard to

resolve. Long-term reproducibility of research results is
difficult to achieve in this environment. One solution is
to freeze the environment in a software container which
contains the specific software versions that are known
to work. In this way, containers can facilitate the repro-
duction of results and the translation of working setups
to clinical pipelines.49,50 While freezing setups is a legiti-
mate approach for production environments or reproduc-
ing results, it is not a sustainable solution for long-term
research and development, where new developments need
to build on top of existing code.

On the other side, BART is designed for rapid pro-
totyping, reproducible research and clinical translation.
It depends only on a few external libraries such as
FFTW, BLAS implementations or—if compiled with GPU
support—CUDA, making it simple to integrate into differ-
ent software environments. Where standard deep learn-
ing frameworks benefit from large community support
integrating new deep learning features, BART benefits
from years of research on MR image reconstruction. For
example, a crucial part of most multicoil reconstruction
networks is the estimation of the coil sensitivity maps
in a preprocessing step. Since BART implements several
calibration methods such as ESPIRiT or NLINV, a full
reconstruction pipeline based on VarNet or MoDL can
be implemented completely in BART. Advanced concepts
from MRI implemented in BART can be directly used in
these machine learning methods. For example, our data
consistency modules are implemented using a generalized
SENSE model supporting multiple sets of coil sensitivity
maps, non-Cartesian trajectories and higher dimensional
extensions which have been shown beneficial for dynamic
MRI.51,52 Concerning performance of training neural net-
works, we have demonstrated that BART can compete
with the TensorFlow implementation of MoDL and Var-
Net. We hope that the deep integration of MRI-specific
operators will be appreciated by researchers from other
groups such that they will contribute to this open-source
deep-learning framework. Further, we plan to reduce the
entry barrier for possible users by extending the Ten-
sorFlow wrapper such that it can be used for defining
denoising networks which can then be combined with
BART’s data-consistency modules in the reconet com-
mand. BART development makes uses of a continuous
integration framework that uses automatic testing. Based
on this, we aim for long-term reproducibility of published
results even with new BART versions. Finally, BART is
already widely used in the community of MRI research and
also used for clinical research as part of automatic recon-
struction frameworks such as Gadgetron49,53 or Yarra.54

Thus, we believe that the integration of neural networks
into BART will also facilitate research and clinical transla-
tion of deep learning methods for image reconstruction.
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5 CONCLUSION

By integrating a complete set of tools for training and
using neural networks into BART, we provide a gen-
eral framework for research in image reconstruction
that combines state-of-the-art methods for image recon-
struction with deep-learning-based methods. The imple-
mentation of two recent deep-learning-based methods in
BART demonstrates similar performance as their original
TensorFlow-based implementations.
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Figure S1. Top: Mean PSNR and SSIM evaluated on the
100 slices of the VarNet evaluation dataset after each
training epoch. Bottom: Similarly, MSE of magnitude
images evaluated on the training dataset (300 slices) and
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evaluation dataset (100 slices). Both, the BART and the
TensorFlow implementation, show a similar convergence
behavior. We assume the slight difference of both metrics
in the early epochs result from a different initialization of
the weights in both implementations.
Figure S2. (A) An nlop-container assigning the nlop F to
GPU X. When the container is called, it changes the CUDA
context to the GPU X. CUDA events are used to (asyn-
chronously with respect to the CPU) synchronize the new
CUDA context with the old one. The input data is copied to
a GPU buffer. Now, the container calls F in the new CUDA
context such that all data shared with the derivative is allo-
cated on GPU X. Finally, the output is copied to the output
array, before the CUDA context is switched back to the
original one. The input and output arrays can be located

on the CPU or an arbitrary GPU. B: Multi-GPU stacking
of nlops F1 and F2. The nlops F1 and F2 are assigned
to different GPUs and are called in parallel by the corre-
sponding OMP-threads. Both GPU wrappers are synced
with the CUDA context active before entering the OMP
parallel region. Before leaving the OMP region, the respec-
tive CPU threads are synchronized with the CUDA context
such that the CUDA context active after leaving the OMP
region can assume that all data is written to the output.

How to cite this article: Blumenthal M, Luo G,
Schilling M, Holme HCM, Uecker M. Deep, deep
learning with BART. Magn Reson Med.
2023;89:678-693. doi: 10.1002/mrm.29485

 15222594, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.29485 by G

eorg-A
ugust-U

niversitaet, W
iley O

nline L
ibrary on [13/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Deep, deep learning with BART 
	1 INTRODUCTION
	2 METHODS
	2.1 Libraries for deep learning in BART
	2.1.1 Numerical backend
	2.1.2 Md-functions
	2.1.3 Bitwise reproducibility
	2.1.4 Automatic differentiation and the nonlinear operator framework
	Composing operators
	Complex numbers
	Implementation of operators

	Functional container

	2.1.5 Neural network library
	Integration of TensorFlow graphs
	2.1.6 Iterative training algorithms

	2.2 Applications and implemented networks
	2.2.1 Variational network
	2.2.2 MoDL
	2.2.3 Extensions to the SENSE-model
	2.2.4 Image reconstruction using a learned prior

	3 RESULTS
	3.1 Reconstructions with BART
	3.2 Computational performance
	3.3 Image reconstruction using a learned prior

	4 DISCUSSION
	5 CONCLUSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	ORCID
	References
	Supporting Information

